
 

 Abstract—The Self-Organizing Network (SON) has been seen 
as one of the promising areas to save OPerational EXpenditure 
(OPEX) and to bring real efficiency to the wireless networks. 
Though the studies in literature concern with local interaction 
and distributed structure for SON, study on its coherent 
pattern has not yet been well-conducted. We consider a target-
following regime and propose a novel approach of goal 
attainment using Similarity Measure (SM) for Coverage & 
Capacity Optimization (CCO) use-case in SON. The 
methodology is based on a self-optimization algorithm, which 
optimizes the multiple objective functions of UE throughput 
and fairness using performance measure, which is carried out 
using SM between target and measured KPIs. After certain 
epochs, the optimum results are used in adjustment and 
updating modules of goal attainment. To investigate the 
proposed approach, a simulation in downlink LTE has also 
been set up. In a scenario including a congested cell with hot-
spot, the joint antenna parameters of tilt/azimuth using a 3D 
beam pattern is considered. The final CDF results show a 
noticeable migration of hot-spot UEs to higher throughputs, 
while no one worse off.  
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I. INTRODUCTION 
The most important challenge for wireless operators is 

keeping pace with growing demands for streaming data. The 
remarkable growth of smart phones, and other devices as 
tablets and laptops in recent years, even worsens the 
situation. Figure 1 shows one of the recent predictions [1, 2] 
for this growth of data demand in the near future. To meet 
this demand several studies have recently been conducted. 
One of the promising areas is the concept of Self-
Organization. The notion of self-organization has very old 
roots in literature [3], but its importance in science and 
technology has only recently been recognised. In fact, it is a 
process to maintain order in a complex dynamic system as 
such system has a distributed character, thus it is robust and 
resists perturbations. Ashby [3], for the first time, 
introduced principles for self-organizing systems; 
afterwards, these principles have been used in several areas 
of science and technology. Although the concept has been 
adopted from cybernetics, during the 1980s and the 90s the 
field was further fertilised by mathematical methods and 
theorems for complex systems and networks [4].  

Due to the limited frequency reuse of modern cellular 
radio networks, the joint setting of the parameters of all cells 
with an irregular layout and coverage areas becomes a 
complex and challenging task. To this end, several research 
areas on different platforms have been initiated, investigated 
and implemented in academia and industry. Among them, 
Self-Organizing Network (SON) has been seen as one of the 
promising areas also to save OPerational EXpenditure 
(OPEX) to bring real efficiency to wireless networks. SON 
aims at network optimization, so the interaction of human 
(networker) can be reduced and the capacity of networks can 
be increased. Although there is no evidence of a unified 
framework in literature, self-organization has certain 
features as:  

 
 global coherent pattern  
 local interaction of nodes  
 parallel and/or distributed structure 

 
In this study, we investigate the first feature in SON and 

take the other two as given. This article includes 7 sections, 
which we present a literature review and state-of-the-art in 
section 2. Proposed methodology and formulation is 
presented in section 3 with a system model description in 
section 4. Desired scenario in SON-LTE/CCO is explained 
in section 5 with the simulation results in section 6. Also, 
the conclusion remarks are presented in section 7.  

II. LITERATURE REVIEW 
There are several use-cases, approved by 3GPP, included 

in different European projects. One of the most practical 
use-cases is considered to be Coverage & Capacity 
Optimization (CCO). It has been known for years that 
antenna has a high impact on the performance of cellular 
networks [5]. Some studies in the last decade have 
specifically been carried out on the optimization of wireless 
networks targeting the coverage and capacity. A work based 
on the multi-objective Tabu Search (TS) has been proposed 
[6] for optimizing the network performance at design stage, 
which introduces a service-oriented framework for an 
underlying network. As a trade-off between the capacity and 
coverage in cellular networks, it has been known that the 
Common PIlot CHannel (CPICH) and antenna parameters 
are effective while the power adjustments are less effective 
in a dynamic environment [7].  
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Figure 1: Data Access Demand Growth (reproduced from [1]) 

 
There are two different approaches for a CCO use-case in 

SON, which are parameter-based and antenna-based. The 
parameter-based approach for optimization in a SON 
produces several problems, e.g: low received SINR in a 
load-balancing case. These problems can be avoided in an 
antenna-based SON. 

In the Bell lab research [8] authors propose two different 
dynamic methods, including the closed-loop and open-loop 
approaches. Combes [9] has proposed a new method based 
on an α-scheduler for CCO in OFDM-based networks with 
Multiple Input Multiple Output (MIMO). They have also 
proposed a closed-form formula and Monte Carlo method 
for the desired network. The impact of antenna azimuth and 
tilt has been studied and its importance in the deployment 
phase of networks has been investigated [10]. In addition, it 
has been shown that a 10dB gain over large areas can be 
achieved by beam optimization [11]. The study on network 
parameter optimization has been started in 3G networks e.g. 
the optimization of parameters of UMTS as antenna beam 
and CPICH control. It is worth pointing out that as 
information from the environment is a necessary part of 
SON, many researchers have already proposed to use the 
intelligent methods from machine learning to neural 
networks, fuzzy systems [12] and game-theoretic approach 
[13]. Feng [14] has described the self-optimization 
algorithm in SON as an auto-tuning process of network, 
considering the measurements from User Equipment (UE) 
& eNodeB. Temesvary [15] has presented an approach for 
tilt configuration based on SINR, which is obtained from 
Channel Quality Indication (CQI). 

Real time antenna optimization has recently attracted 
many interests from the industry, among them Remote 
Electrical Tilt (RET) and Remote Azimuth Steering (RAS) 
have been standardised. From the technical side, having 
standards for tilt/azimuth, the advances in Electrical Down 
Tilting (EDT) have enabled the adjustments of antenna 
patterns. Other techniques such as Continuously Adjustable 
Electrical Down Tilt (CAEDT) have enabled intelligent 
algorithms for self-optimization. Antenna Interface 
Standards Group (AISG) [16] has provided the main 
standards for CAEDT and RAS. AISG v2 is consistent with 
the 3GPP standards (TS25.460, TS25.463). These 
techniques have provided the feasibility for creating an 
adaptive network that is SON in our study. The optimization 
process will be carried out in eNodeB while the 
configuration control is for the parameter adjustments 

whenever the final optimal results are obtained. As a 
history, CELTIC GANDALF [17] projects (2005-2007) are 
among the first European projects that addressed the 
potential of automating tasks in GSM, UMTS and WLAN. 
Thereafter, the MONOTAS project provided the adaptive 
algorithms for pilot power to combat the traffic load during 
the next two years. Also, projects as SOCRATES [18], 
ANA [19], BIONETS, 4WARD and UniverSelf, have been 
dedicated to SON development. The recent project called 
EARTH is concerned with the “new concepts” for dynamic 
optimization of wireless networks, such as self-optimization 
and/or self-configuration [20].  

III. METHODOLOGY  
     As the global pattern is one of the main SON features, in 
this study, target KPIs are considered as our global pattern 
and the similarity between target and performance 
parameters is measured by Similarity Measure (SM) [21].  
Thereafter, for the optimization part, a Monte Carlo based 
optimization, a meta-heuristic algorithm, the Enhanced 
Adaptive Simulated Annealing (EASA) has been designed 
[22]. A pseudo-code of EASA is shown in figure 2. EASA 
has been proposed as optimization algorithm in our goal 
attainment approach. In this study the applicability of the 
proposed method in a mobile network is investigated, with a 
simulation towards a multi-cell multi-user model. As SON 
functionality is supported by LTE, we used LTE structure in 
our simulations. The pseudo-code represents the developed 
algorithm for self-optimization in simulated SON. The 
annealing function in EASA is based on Similarity Measure 
(SM), which will be discussed later in this section. The 
following procedure was designed to put coverage & 
capacity in an adaptive process. In the remainder of this 
article, two parts of adjustment and update are considered 
for network (soft) and antenna (hard) parameters as depicted 
in the flow diagram (figure 3).  

 
begin procedure  

define objective function f(v), v:=( )  
begin initialization 

initialize Temperature T0  
initialize initial guess v0

  
set final Temperature Tf 
determine max(Iteration):=N 

end initialization 
determine the similarity measure(S) between KPIs 
define cooling schedule T(S,t) as α(S)T(t); (0<α<1)  

while (T>Tf) and (n<N) 
set new parameters: vn+1 
calculate δ=fn+1(vn+1)-fn(vn)
accept the new solution if better 

if not improved 
calculate β=exp{-δ/{KT(S,t)}} 
generate rand (0<rand<1) 

if β>rand 
accept the new solution 

endif  
endif 

update the best  v*, f* 
end while 
determine optimum parameters  :=v*  

end procedure 
Figure 2: Pseudo-Code for EASA Optimization Algorithm 
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Mathematically, we consider a maximization of 
performance as the main objective, therefore; 
 

                                            (1) 
 
where K is the number of cells, p is the performance 
measure and f is the objective function, so our optimum 
parameters can be formulated as:  
 

{                                         (2) 

 
which is combination of  network parameters 
within K cells. As a Multi-Objective Optimization (MOO) 
has been set up in our study, the performance measure is 
defined based on similarity between measured KPIs and 
target KPIs. KPIs from all involved cells are considered, as: 
 
KPI: { }      ;ith KPI in jth cell                                       (3) 
 
As the network operator may consider different patterns for 
different cells, a measure using all parameters is considered. 
If target KPI is denoted by KPI(t): 
                                                

 

      (4) 
is the general form of performance measure in our approach 
and  is weight for ith KPI in jth cell and KPI(m) is 
measured KPI and ||.|| denotes a measure. The best weights 
can also be selected through the optimization process, 
however, they are initially set up by the network operator in 
our approach. 
    In that case, each cell may have its own performance; in 
the first step, the overall performance measure of  is 
considered for cell j. We evaluate each step of optimization 
by measuring a distance (similarity) among KPIs. Mostly to 
measure a distance between any two sets of parameters, a 
measure in Euclidean space is used that measures farness. 
However, this measure does not provide any holistic view of 
real similarity between measured and target vectors. To this 
end, we considered similarity between KPIs, so the 
formulation for similarity measure of jth cell is:  

 

         (5) 
 
where S is first-order (q=1) similarity measure and l is the 
number of KPIs in each cell. In this study, normalized inner 
product which complies with similarity measure [21] has 
been selected. The motivation for considering the similarity 
is establishing effective self-organization towards the target 
pattern, and a meaningful measure for performance 
evaluation in EASA. We will compare the results with 
Multi-Objective Simulated Annealing (MOSA) which 
together with Multi-Objective Genetic Algorithm (MOGA) 
are among conventional MOO methods, which in latter a 
genetic algorithm is exploited for optimization purpose, 
instead. 

 
Figure 3: Flow Diagram of proposed Goal Attainment Approach 

IV. SYSTEM MODEL 
A scenario in LTE was set up and an analytical model for 

downlink was developed. An unbalanced load as a hot-spot 
in the first cell is considered and each cell may have its own 
parameters. The shadowing of log-normal distribution is 
utilised with correlations among users who are served by the 
same eNodeB and their distances are less than a pre-defined 
value (50m in the simulation). Path loss, penetration loss 
and thermal noise are added to our final model. Throughput 
and fairness are formulated as multiple objective functions, 
which are used in the optimization process. The PRB 
bandwidth (180 KHz) has been applied to each user in jth 
cell. Also, including both antenna parameters (tilt & 
azimuth), the optimization algorithm of EASA is considered 
and a complete set of measurements and indicators are 
supposed for all cells, as well as traffic load information. A 
simulation was started from the largest set of values. The 
pair parameters to be adjusted are considered as: 

 
= {( ), ( )… ( )}                                      (6) 

 
which  is tilt declination and  is azimuth orientation 
angles, with slight changes in angles we will have: 

 
= {( ), ( )… ( )}                                     (7) 
 

To accept the changes, an evaluation based on similarity 
measure is carried out. Suppose β is the acceptance 
probability and then we will have: 
 
β   ; β: ff(δ, S) ,δ=f( )-f( )           (8)                          

 
S in the similarity measure, f(.) is the objective function and 
ff denotes “function of”. K is Boltzmann constant and T(S,t) 
is defined as:  
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 (S)          ;  =                          (9) 
 
is the annealing function in EASA with t as time and  is 
the initial value for T. ,  are determined empirically 
during optimization process, subject to: . As the 
probability function is exponential, so a decrease in S makes 
new pairs of acceptable even though the objective 
function becomes worse. However, a probability of rejection 
is always present unless S=1 (the exact match between 
KPIs). The self-optimization algorithm for self-optimization 
tasks is used which can adaptively update pair parameters of 
the cells.  

V. SCENARIO 
The BS transmit power is 43dBm, the noise power is 

considered as -114dbm per PRB, an antenna pattern is 
assumed for BSs and antennas always have a relative gain. 
The beam pattern can be calculated based on:  
 

(10) 
which , are the antenna beam patterns of the tilt and 
azimuth for jth cell, also  and are vertical and 
horizontal half power beam-width, respectively. Pairs of 
( ) are selected as in (6), also ,  denote tilt/azimuth 
of the antenna. Therefore, the 3D model of the antenna 
pattern can be obtained. Also, it is assumed that all cells 
have the same resource of bandwidth and then a fixed 
number of PRBs. The best-effort model for traffic is 
considered, however, Constant Bit Rate (CBR) model is not 
in line of our study. The width of the cell in the initial 
conditions is equal to 1Km. In addition, there is fair 
scheduling for PRBs. Values for parameters of the 
shadowing and path loss are based on 3GPP 
recommendation (Table A.2.1.1-3 in [23]) and for the 
shadowing effect, user correlations are also considered. The 
path loss (L) model is based on Okumura-Hata, thus with a 
penetration loss of 20dB, we have: 

 
L=128.1+37.6log(d)+20 (dB)                                         (11)  

 
which d(Km) is the distance between the base stations and 
UEs. As the height of antenna can be 20-70m as per 
recommendations, in this study, the difference with UE is 
supposed to be 35m. To conduct an accurate shadowing 
model in our study, the two-dimensional shadowing is 
exploited in the simulation. Also, standard deviation is 8dB, 
μ=0 [23] for log-normal distribution with spatial 
dependency. Therefore, the received power after total loss 
and total gain of antenna and beam pattern with transmit 
power of  is:   
     

                                (12) 
 
where P is the received power in the desired cell and Pj is 
the received power from the other cells in the area. Details 
of the initial setting for the network parameters can be found 
in table 1 for the scenario depicted in figure 4. The set up is 
based on SON-LTE with interference-limited scenario. 

Reporting interval in this table represents how many times 
the UE and traffic measurements are collected. For 
coverage, the corner of each cell must receive at least power 
greater equal than the threshold from one of three 
neighbours. That is the same method as when a cell outage 
happens and the self-healing function of SON is enabled to 
recover the problem. Finally, two objective functions been 
considered using SINR which are throughput (TH) for ith 
UE in jth cell and Jain’s Fairness Index (JFI) as:  
 

 

                                                (13) 
                                      (14)                    

 

(15) 
which ρ1, ρ2 are the efficiency parameters for the Bandwidth 
(W) and SINR, respectively.  is number of UEs in jth cell. 
 

 
Figure 4: CCO use-case with Hot-Spot and Antenna Beam Pattern 

 
Table 1: Set-Up Parameters in SON-LTE Scenario  

Parameter Value/ Setting 
Height Difference <UE,eNodeB> 35m  
Noise Figure 9dB  
PRB (W) 180KHz 
Antenna Gain 10dBi 
eNodeB Tx Power ( ) 43dBm 
Cell Radius 1Km 
Bandwidth Efficiency Coeff. ( ) 0.9 
Max Number of UE in Cell (M) 50 
Vertical half power Beam-width ( ) 10  
Horizontal half power Beam-width ( ) 60  
Path Loss model: Okumura-Hata (L) 128.1+37.6log(d) 
Thermal Noise (N) -114dB 
Traffic Model  best-effort 
SINR Efficiency Coeff. ( ) 1.2 
Shadowing Decorrelation Distance 50m 
Shadowing Distribution Parameters (σ, μ) 8dB, 0 
Antenna Azimuth Initialization  0, 120 , -120  
Reporting Interval 2sec 
LTE Signal Bandwidth   20MHz 
Penetration Loss [ref. 23] 20dB 
Number of Cells/Sectors   19/57 

VI. SIMULATION RESULTS 
To investigate the proposed method, firstly, a 

homogeneous network is considered and the azimuth 
orientations are set at 0°, 120° and -120° as default for 
antennas in each cell. The scenario setup includes 19 cells 
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and 50 UEs distributed with a random hot-spot in the first 
cell. The fact that the path losses for UEs within the hot-spot 
are noticeably the same, is the main key for a represented 
system model, whereas most loss in this scenario caused by 
the path loss. The CDF results for the final epoch have been 
illustrated in figure 5. Each epoch in this study is the 
duration of certain steps in the optimization process. As we 
can see in this figure, the CDF of UE throughput has been 
improved as most UEs had lower throughputs before the 
optimization. Yet, we can still find few UEs with low 
throughput; most UEs have access to higher throughput. 
Effect of hot-spot UEs on CDF can be seen in figure (5). 
The final CDF results show a noticeable migration of hot-
spot UEs to higher throughputs, while no one worse off.  

Figure 6 (a) and (b) show convergence of EASA and 
MOSA and 10%-top UE throughput and fairness, 
respectively, based on (14), (15). The other methods as 
MOGA has also been known for MOO [24], however, while 
MOGA can also reach optimal solution, SA-based 
algorithms are based on local-search. In this study we 
considered two different SA-based algorithms to investigate 
the effect of SM. In this figure, results for one optimization 
of throughput and fairness are shown. Both methods are 
convergent in this scenario, however, EASA is faster than 
MOSA in terms of convergence. The optimization process 
affects the UE allocations as some UEs from neighbour cells 
have temporarily been reallocated until next optimization 
epoch and permanently reallocated after the process which 
is trigged by the detection module in figure 3. The JFI in 
(15) is calculated for UEs of underlying cell which is cell 
with the hot-spot for the result in figure 6(b), however, the 
reallocation has produced noticeable fluctuations, e.g. after 
epoch 20. 

Figures 7 (a) and (b) show variations in tilt angles and 
azimuth orientations, converging to the final values of 
optimal states. It can be seen that the tilt of the antenna in 
first cell with hot-spot has been changed. In this figure the 
final values of azimuths show less noticeable changes while 
there are more changes in tilt angles as we may infer the 
optimization intends to decrease the interference while 
power is limited. In figure 7, tilts and azimuths are shown 
that cover the intersection of three adjacent cells, including 
the first cell with hot-spot. This scenario for hot-spot has 
already been shown in figure 4 in this article. In figure 7, 
epoch is defined as before and for consistency a specific 
range of angles between [-12 , 12 ] has been considered.   

VII. CONCLUSION REMARKS 
The Similarity Measure (SM) was integrated into the self-

optimization process of SON, which was designed based on 
simulated annealing, as Enhanced Adaptive Simulated 
Annealing (EASA) algorithm. The goal attainment approach 
with the proposed algorithm of EASA was investigated with 
a scenario of CCO use-case in SON-LTE with hot-spot. This 
is usually the case, as an effect of dynamic behaviour in the 
networks. The final results of UE throughput show that the 
proposed method outperforms the performance in terms of 
desired KPI. In comparison with the conventional method, a 
simulation was also considered. In a scenario including a 
congested cell with a hot-spot, the antenna parameters of 
tilt/azimuth were considered with throughput and fairness as 

objectives. Based on the input measurements from UEs and 
the cells, optimizations were carried out which finally 
enhanced the CDF of UE throughput. The antenna 
parameters of tilt/azimuth were updated based on the final 
optimization process. The process was initiated after 
detection of coverage or capacity problem in cell/cells. It 
can be concluded that EASA outperforms the conventional 
method in SON-LTE with the application of CCO use-case. 
An extension of self-optimization approach to the Het-Net 
with dead-spot in a multi-tier single-RAT scenario (figure 8) 
is considered for future work.  

 

 
Figure 5: CDF in Simulation: EASA and MOSA Methods       

     

 
(a) 

 
 (b) 

Figure 6: UE Throughput (a) and Jain’s Fairness (b) Results in EASA 
and MOSA 
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(a) 

 
(b) 

Figure 7: Tilt (a) Azimuth (b) Results for 3 Sectors of Congested Cell 
 

 
Figure 8: Multi-Tier Single-RAT Scenario with Dead-Spot in Het-Net 
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