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Abstract—Self-healing is a key desirable feature in emerging
communication networks. While legacy self-healing mechanisms
that are reactive in nature can minimize recovery time substan-
tially, the recently conceived extremely low latency and high
Quality of Experience (QoE) requirements call for self-healing
mechanisms that are pro-active instead of reactive thereby
enabling minimal recovery times. A corner stone in enabling
proactive self-healing is predictive analytics of historical network
failure logs (NFL). In current networks NFL data remains mostly
dark, i.e., though they are stored but they are not exploited to
their full potential. In this paper, we present a case study that
investigates spatio-temporal trends in a large NFL database of
a nationwide broadband operator. To discover hidden patterns
in the data we leverage five different unsupervised pattern
recognition and clustering along with density based outlier
detection techniques namely: K-means clustering, Fuzzy C-means
clustering, Local Outlier Factor, Local Outlier Probabilities and
Kohonen’s Self Organizing Maps. Results indicate that self-
organizing maps with local outlier probabilities outperform K-
means and Fuzzy C-means clustering in terms of sum of squared
errors (SSE) and Davis Boulden index (DBI) values. Through
an extensive data analysis leveraging a rich combination of the
aforementioned techniques, we extract trends that can enable the
operator to proactively tackle similar faults in future and improve
QoE and recovery times and minimize operational costs, thereby
paving the way towards proactive self-healing.

Index Terms—K-means clustering, Fuzzy C-means clustering,
Self Organizing Maps, Local Outlier Factor, Local Outlier
Probabilities, Network Failure Log database

I. INTRODUCTION

As the global mobile data increased to 3.7 exabytes per
month at the end of 2015, 51% of that data was offloaded
onto the fixed infrastructure [1]. With an increase in femto
cell deployment density and advent of Internet of Things
(IoT) as one of 5G use cases, maintenance and reliability of
existing broadband infrastructure is key to sustaining the data
requirements. On the other hand, gradually decreasing average
revenue per user (ARPU) and the cost of reliable backhaul for
small cells is a growing a pain point for mobile operators
[2]. These trends translate into need for providing reliable
broadband, while keeping operational costs low. To meet
this pressing need more intelligent mechanisms to optimize,
maintain and troubleshoot the broadband infrastructure have
to be developed. One possible approach to achieve these
objectives is to exploit the massive amount of data that
can be harnessed from the network. Systematic analysis of
such big data can be leveraged to minimize operational cost,

maximize resources efficiency, and enhance customers’ quality
of experience (QoE).

Inspired by the network telemetric data exploitation frame-
work presented in [3], in this paper, we present findings
of our comprehensive analysis of a real network failure
log (NFL) data set obtained from a nationwide broadband
service provider serving about 1.3 million customers. The
data is extracted from company’s Siebel customer relationship
management (CRM) system that records and tracks status of
customer complaints along with network generated alarms that
affect a particular region during certain time. The selected data
spans duration of 12 months and contains about 1 million
NFL data points from 5 service regions of the company. The
extracted data has 9 attributes out of which 5 are selected
for our analysis. These analyzed attributes include: 1) fault
occurrence date, 2) time of the day, 3) geographical region, 4)
fault cause and 5) resolution time. The objective of the study
is to convert this raw NFL data, into a knowledge base that can
readily be used by the operator to take more optimal decisions
for minimizing operational cost, minimizing recovery time and
maximizing QoE.

Problem Statement: To this end, this paper serves to
investigate the following hypotheses:

Ho: We can identify clusters with distinct spatio-temporal
features within the NFL data set by applying data mining
techniques.

H1: Out of the proposed techniques, there exists one or
a combination of multiple machine learning techniques that
provide optimal clustering and anomaly detection results.

To perform this analysis, instead of taking the classic
statistical approach, where a sample of the data is analyzed to
draw conclusions that are then extrapolated for the whole data,
we take big data based approach in which the whole of data
is analyzed without any sampling. While the former approach
can help reduce the number erroneous entries through careful
selection of samples from the whole data, the advantage of the
big data based approach is that it can bring forth subtle patterns
and insights which can be missed by sampling based approach.
To explore hidden patterns in the NFL data, and to see
which machine learning tools yields best insights, we apply a
range of unsupervised learning and density based local outlier
analysis techniques namely: 1) K-means clustering, 2) Fuzzy
C-means (FCM) clustering, 3) Kohonen’s Self Organizing
Maps, 4) Local Outlier Factor (LOF) and 5) Local Outlier
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Probabilities(LoOP). The results of these different algorithms
are compared in terms of sum of squared errors (SSE) and
Davis Boulden index (DBI) values. Since the NFL data is
unlabeled, unsupervised clustering techniques are preferred
over supervised clustering as they provide unbiased groups of
similar NFL traits. The applied techniques are established in
the literature for efficient unsupervised clustering and anomaly
detection in clustered data which makes them suitable for our
study.

The novel insights revealed by the presented analysis can
not only be used for minimizing the maintenance costs, but
also to improve the QoE by minimizing the recovery time.
Minimization of recovery time is possible through the pre-
sented NFL analysis, because by building on spatio temporal
trends of certain or all network failures revealed by this
analysis, a proactive instead of reactive maintenance schedule
can be designed. The rest of the paper is organized as follows.
Section II presents a review of relevant literature work, in
section III we introduce the machine learning techniques,
section IV elaborates on the data attributes and pre-processing
techniques to normalize the NFL data, and in section V the
learning results and key insights are discussed followed by the
conclusions in Section VI.

II. RELATED WORK

Big Data empowered Self Organizing Networks (BSON)
can be leveraged to utilize the huge amount of network
information and create end-to-end visibility of the network
resulting in improved quality of service (QoS) [3]. For in-
stance, one of the exciting trends in application of machine
learning algorithms on network generated data is the analysis
of call data records (CDRs). The authors in [4] explained
the application of K-means clustering for anonymized CDRs
to find usage groups and optimal clusters for their datasets.
In [5], K-means algorithm was applied on the CDRs of the
employees of an IT company to form 4, 6 and 8 clusters
to identify trends such as voice calls, SMS, call durations
and data traffic. On a general basis, it is seen that employee
level could be identified based on the cluster assigned, for
example the top management of the company was assigned a
single cluster due to similar pattern of CDRs. [6] discussed
different machine learning (ML) methodologies for customer
churn prediction in telecom industry. The initial results are
compared with performance enhancement using boost method-
ology. The authors used churn data from UCI Repository and
applied ML techniques and classification methodologies such
as ANN, support vector machines (SVMs), DTs, Naïve Bayes
classifiers and logistic regression. Another useful perspective
on application of different algorithms for churn prediction
in telecommunication industry using K-means clustering was
presented in [7].

Literature also provides examples of clustering for customer
satisfaction using different attributes of telecom users such as
[8] where the authors gave a detailed account of hierarchical
cluster analysis through its different techniques; top down
(divisive approach) versus bottom up (agglomerative approach)

to create the clusters with similar traits. A comparison of K-
means algorithm with fuzzy C-means is given in [9] where
the authors performed clustering on 4 attributes of broadband
service on about 285,000 data points. Results indicated that
although K-means algorithm is computationally efficient, C-
means is more prone to noise in the data. Self organizing maps
(SOM) provide higher classification accuracy as compared
to K-means clustering for a variety of synthetic and real
world datasets [10]. Classification accuracy for SOM is found
to be superior for lower number of clusters; however as
the number of clusters increases, K-means clustering shows
similar performance [11].

Compared to existing studies, the novelty of this paper is
two folded: first, to the best of our literature survey, real NFL
data of this size and nature has not been analyzed before and
second, this is a first study to compare the performance of K-
means and fuzzy C-means with SOM by leveraging LOF and
LoOP analysis on same real data set. Through our analysis in
this study, we propose using proactive self-healing schemes to
minimize number of service outage events and mean outage
duration. For a review on possible self-healing frameworks
based on network generated big data, please refer to our recent
work in [12][13][14][15].

III. EMPLOYED ALGORITHMS

A. K-means clustering

K-means is a prototype-based partitional clustering tech-
nique that clusters the given data in K clusters where K
is the user-specified number of clusters [16]. It is the most
commonly used clustering technique that creates one-level
partitioning of a continuous n-dimensional data with centroid-
based prototyping. The centroid assignment and updation cycle
is repeated until the centroids remain very similar or there is
a negligible percentage of data points changing clusters. The
optimal cluster centroid which minimizes the SSE is the mean
of all the data points assigned to the cluster and given by

ck =
1

mk

∑
xεck

xk. (1)

In our analysis, we employ Elbow method that determines
K as the point when decrease in SSE becomes linear as we
increase K incrementally. To avoid sub-optimal clustering, we
choose random centroids multiple times and select the set
of centroids that gives us minimum initial SSE. Our post-
processing technique alternately splits and merges K-means
clusters so that the SSE is reduced but the total number
of clusters remains fixed. The K-means algorithm applied is
summarized in Algorithm 1.

B. Fuzzy C-means (FCM) clustering

In the traditional K-means algorithm, a data point belongs
to a set with certainty of either 0 or 1. In FCM, each data
point xi is assigned a degree of membership with each cluster
Cj through a membership weight wij that varies between 0
and 1 [16]. The weights for data points sum to 1 and each
cluster contains at least one point with a non-zero weight,
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Algorithm 1 K-means clustering algorithm
1: Randomly select K points multiple times as cluster centroids
and select the ones with minimum SSE.
2: Repeat
3: Cluster dataset by calculating minimum distance of
each data point with all K centroids.
4: Recompute the centroid of each cluster.
5: Until centroids do not vary above a fixed percentage.

i.e.
∑k
j=1 wij = 1 and 0 <

∑n
i=1 wij < m. Like K-means,

FCM aims to minimize the SSE using centroid updation and
assigning each data point to the closest centroid calculated
using (3). The SSE calculation is measured on Euclidean (L2)
distance multiplied by wij for each cluster,

cj =

n∑
i=1

wpijxi∑n
i=1 w

p
ij

. (2)

p represents the rate of weight in (3) and can have any value
between 0 and 1. The FCM algorithm is summarized below
as Algorithm 2.

Algorithm 2 Fuzzy C-Means clustering algorithm
1: Assign membership weights to each data point based on
minimum overall SSE.
2: Repeat
3: Compute the centroid of each cluster.
4: Recompute the membership weights of data points.
5: Until centroids do not vary above a fixed percentage.

C. Kohonen’s Self Organizing Maps (SOM)

Kohonen Self-Organizing Maps are an unsupervised type of
neural networks that learn on their own through unsupervised
competitive learning by mapping the weights of the nodes
to conform to the input data presented to the network [17].
SOMs are represented using low dimensional (usually 2- D)
representation of the input data. It has only one layer in which
each node also called the neuron has 2 properties: its position
in the map (x,y coordinates) and its codebook (CB) vector.
The CB vectors for neurons have the same dimensions as the
input data (normally 1 x m for m-dimensional data space).
The training in SOM consists of 3 distinct phases:

1) Initialization: SOM can be initialized in a random or
linear manner. In random initialization, each codebook vector
is assigned a random value for the dimension representing a
particular attribute. Linear initialization chooses the codebook
vector in the subspace formed by the eigenvectors for the two
greatest eigenvalues.

2) Rough-Training: The first phase of SOM training has a
higher neighborhood radius and learning rate with a fewer
number of epochs. This phase is also called fast learning
because the CB vectors for neurons update significantly based
on the proximity to the best matching unit (BMU).

3) Fine-Training: It consists of a larger number of epochs,
small learning rate and smaller neighborhood width. The fine
training starts with a smaller radius and the CB vectors change
to a smaller extent as compared to coarse learning.

The SOM algorithm applied in this work is summarized as
Algorithm 3.

Algorithm 3 SOM algorithm
1: Randomly initialize the codebook vectors for each neuron.
2: Repeat
3: Input faults data to the network in a random sequential
manner.
4: Identify the BMU through minimum L2 distance from
the input vector.
5: Calculate the neighborhood radius that starts from
the initial SOM radius and decreases exponentially with each
epoch as Rn(σ(t)) = σoe

−t/λ where σo is the initial SOM
radius and λ is the time constant given by the ratio of total
epochs and map radius.
6: Adjust the weights of the nodes to resemble
the input vector such that the nodes in close vicinity to
the BMU experience higher change in their weights, i.e.
W (t + 1) = W (t) + Ω(t)L(t)(I(t) − W (t)), where I(t)
and W(t) are input and CB vectors, L(t) = Loe

−t/λ and
Ω(t) = e−(L

2)2/2σ2(t). Here Lo and L2 are the initial SOM
learning rate and Euclidean distance respectively.
7: Until error parameters are minimized.

D. Local Outlier Factor (LOF)

This is a density based local outlier analysis algorithm
proposed for outlier detection in data sets [18]. The detection
is based on cluster density in the surroundings of each data
point and the factor can be represented as a continuous value
with higher values indicating the data point being away from
a dense cluster. The parameter that affects the performance
of the algorithm is MinPts that is the number of data points
defining the neighborhood of an object. The LOF calculation
algorithm is summarized in Algorithm 4:

Algorithm 4 LOF algorithm
1: Calculate the reachability distance of an object p
with respect to another object o as: Rdk(p, o) =
max{dk(o), L2(p, o)} where dk(o) defines the k-distance of
the object o.
2: Calculate the local reachability distance (lrd) that is the in-
verse of the average reachability distance based on the Min-pts
neighborhood and given for an object p by: lrdMinPts(p) =
[(
∑
oεMinPts(p)RdMinPts(p, o))/NMinPts(p)]

−1.
3: Calculate the LOF score that is defined as the averaged ratio
of local reachability factor of p and the local reachability factor
of its MinPts neighbors. Mathematically, it is expressed as
LOFMinpts(p) =

∑
oεMinPts(p)

lrdMinPts(o)
lrdMinPts(p)

.NMinPts(p)
−1
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E. Local Outlier Probabilities (LoOP)

This is an enhancement to the LOF algorithm by assigning
an outlier score (LoOP) in the range of [0,1] [19]. The LoOP
values show the degree to which an object in a cluster can be
identified as an outlier. The LoOP results from this technique
outperforms the LOF scores as they have a fixed range so
the degree of outlierness can be compared for different data
distributions with relative ease. The algorithm for calculating
LoOP values is summarized below:

Algorithm 5 LoOP algorithm
1: Calculate the probabilistic set distance of an object o in a
data set S with significance µ as Pd(µ, o, S) = µ.η(o, S)
where η denotes the standard deviation of the object with
regards to the L2 distance.
2: Calculate the probabilistic local outlier factor (PLOF) that is
the ratio of object densities around the object and the expected
value of the densities around all objects in the data set and
expressed as: PLOFµ,s(o) = Pd(µ,o,S(o))

EsεS(o)[Pd(µ,o,S(s)]
− 1.

3: Normalize the PLOF values and convert into probability
values (LoOP) by: LoOPs(o) = max{0, erf(

PLOFµ,s(o)

nPLOF.
√
2

)},
where nPLOF = µ.

√
E[(PLOF )2].

IV. DATA ATTRIBUTES & PREPROCESSING

Data filtering and preprocessing are few of the most crucial
processes in the knowledge discovery process before applying
any clustering algorithms. The selected data attributes in our
analysis have different types, distributions and ranges. A
summary of the data attributes’ features are presented in Table
I.

Along with distinct data types and ranges, the attributes have
different distribution properties. For instance, the Date attribute
has somewhat uniform distribution whereas the Lead Time
has a distribution curve similar to Gamma distribution. The
categorical data attributes are assigned numerical values based
on the proximity of geographical regions in case of Region
attribute and similarity in root cause analysis (RCA) for Fault
Cause attribute. Since the data range is not uniform for the
attributes, we perform the standard / z-score normalization to
convert the data range on a uniform scale for all attributes. As
an example, the data range reduction after normalization for
Lead Time attribute is given in Fig. 1.

V. LEARNING RESULTS AND DISCUSSION

A. K-means, Fuzzy C-means

We use the elbow method to determine optimal number
of clusters for our K-means and FCM analysis. For both
the algorithms, the optimal value of K after which further
clustering gives linear improvement is 5. Several iterations of
each algorithm are run to determine the performance in terms
of minimum SSE. The SSE for the entire data with K clusters
each with centroid ci is calculated using

SSE =
K∑
i=1

∑
xεCi

L2(ci, x) (3)

Fig. 1. Range variation in Lead Time scale after z-score normalization

where L2(ci, x) denotes the Euclidean distance between the
centroid and a data point x. The optimal SSE results for each
algorithm are picked and presented in Fig. 2. The K-means
clustering exhibits better SSE results based on which we select
it as the technique used for extracting insights from the raw
NFL data. The FCM does not perform optimally for our data
set because of overlap within data attributes between multiple
clusters. FCM algorithm terminates within fewer iterations for
this kind of big data but K-means creates a larger separation
between clusters which is desired for distinguishing distinct
features in each cluster.

Fig. 2. Optimal SSE results for K-means, FCM

After establishing that K-means clustering outperforms
FCM with better SSE results, we investigate the clusters
formed with respect to the Lead Time attribute as the most
critical key performance indicator (KPI) for customer satisfac-
tion. The Lead Time distribution for each cluster is presented
in Fig. 3 where µ and σ denote the mean and standard
deviation. It is observed that cluster 5 has the worst resolution
times with highest mean Lead Time. We investigate other
associated attributes in cluster 5 to find linkages with the
critical KPI and find that the Region attribute has mean 2.30
and constitutes NFL data originating mostly from region 1
of the service area, the Fault Type has a major contribution
from sync loss and slow browsing due to network parameters,
the Fault Date is uniformly distributed which indicates this
attribute has no distinction in this cluster and the critical
Fault Time has highest percentage distribution between 1
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TABLE I
DATA ATTRIBUTES PROPERTIES

Attribute Type Range Description
Date numerical, circular and continuous (1,13] reflects the month and day of fault occurrence

Region categorical, linear and discrete [1,7] five regions assigned values based on geographical separation
Time numerical, circular and continuous [0,24) fault occurrence time in hh:mm

Fault Cause categorical, circular and discrete [1,100] 92 different fault causes assigned numerical values based on similarities in root cause
Lead Time numerical, linear and discrete [0,437) fault resolution time in hours

pm and 4 pm. These insights show that there are certain
geographical regions, fault types and critical service times for
the operator. To enhance overall customer experience, reduce
service delays and therefore increase customer retention, the
operator must improve the network and performance standards
in region 1, perform further root cause analysis to avoid
the highlighted fault causes and ensure downtimes reduction
during the mentioned service critical times.

B. Self-Organizing Maps

Due to its high complexity and large data set size, we train
our SOM for a 15x15 network grid with codebook vectors
of dimension 1x5 for each node / neuron. The first step in
SOM learning is choosing the initial network parameters such
as neighborhood radius and learning rates for both coarse
and fine learning phases. The coarse phase starts with the
following parameters: initial map radius σo= 10, time constant
λ= Number of epochs / map radius = 200/10 = 20 and
neighborhood radius σ =σoe

−t/λ= 10e−t/20. The radius
reduction implies that the coarse learning phase, i.e. when
neighborhood radius > 1, completes at 55 epochs. We notice
that overfitting causes increase in error parameters during fine
training. To avoid overfitting, we keep the training radius
above 1 for the entire fine learning phase. We conduct multiple
experiments to determine the optimal initial parameters and
observe that when σo = 5 and Lo = 0.1, the error parameters
topological error and DBI show least values of 3.97% and
16.93 respectively at the 154th epoch after which overfitting
increases topological error value (Fig. 4). Topological error is
the percentage of data points in an epoch for which the 1st
and 2nd best matching nodes are not neighbors. DBI is also a
measure for evaluating clustering algorithms as it is an average
ratio of intra cluster variance and inter cluster distance for all
the clusters. Lower DBI values indicate better clustering and
higher separation between cluster centroids.

We train the SOM network with the optimal initial param-
eters for 154 epochs and obtain a smooth distribution for all
the dimensions, each dimension representing the CB vectors
for the respective attributes in a 2-D 15x15 grid. The data
distribution shows highest percentage of data points in neurons
with coordinates (15,15), (15,1) and (15,4) that have lead times
between 29-31 hours which according to the input data is close
to the mean lead time and should constitute the majority of
data. We analyze the performance critical KPI Lead Time’s
distribution over the SOM and observe that the pain point
neurons with highest fault resolution times reside near the
origin and bottom corner left in the SOM (Fig. 5). To analyze

Fig. 4. Error metrics for optimal initial parameters

the association of other data attributes with nodes exhibiting
high Lead Time values, we plot the SOM distribution for
each attribute separately (Fig. 6 - due to space constraint,
we only plot the color gradient of attribute distribution). The
trained SOM network gives a well separated distribution for
each attribute as seen from Figs. 5 and 6. From the circled
nodes in Figs. 5 and 6, we infer that high lead times mostly
occur during the months of May – July, the geographical
locations associated with these long duration outages originate
mostly in regions 1 and 2, the critical fault occurrence times
are between 12-2 pm and 8-9 pm, and the associated fault
cause numbers indicate Sync Loss and Browsing issues as
the core reasons for delayed fault resolutions in these regions.
The SOM network thus provides similar insights as K-means
analysis to the service provider in terms of the spatio-temporal
pain points in the network.

Fig. 5. Lead Time distribution in the SOM network
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Fig. 3. Lead Time attribute for K-means clusters

Fig. 6. Date, Fault Time, Region and Fault Cause distributions in the SOM network

C. SOM with density based anomaly detection

We apply different density based local outlier determination
algorithms (LOF, LoOP) to consolidate on the trained SOM
network and determine the degree to which every node exhibits
anomalous behavior. The outlier results after applying these
algorithms are given in Figs. 7 and 8. For LOF, we increment
MinPts in multiples of 10 and observe that the maximum
LOF values are obtained at MinPts = 20. From Fig. 7, the
nodes with higher anomaly factor (circled in red) using LOF
algorithm tend to be located at the corner nodes in the SOM.
The LoOP analysis (we set µ=3) normalizes the anomaly
factor and provides a clear distinction of the anomalous nodes
from the rest of the network (Fig. 8). This is because LoOP al-
gorithm is independent of MinPts and gives a relative measure
of outlierness. The attributes for anomalous neurons include
extremely early morning fault times (2-5 am), geographical
locations based in regions 2 and 3, occurrence dates within
the months of June - July and resolution times around the
mean value (about 30 hours). Although the probability of
occurrence of the anomalous scenarios is low, the operator
must be proactive in avoiding faults in the highlighted spatio-
temporal regions.

D. Clustering efficiency analysis

Finally after analyzing insights from our K-means clustering
and SOM results, we compare the clustering efficiency of K-
means, FCM and SOM. Since each node in the SOM can
be considered as an independent cluster, we apply K-means
clustering on the trained SOM network with K = 5 to obtain
uniform number of clusters for each technique. The clustering
performance is evaluated in terms of SSE and DBI values,
the results of which are summarized in Table II. The large
variation in SSE value for SOM as compared to K-means

Fig. 7. LOF (Local Outlier Factor) values for MinPts=20

Fig. 8. LoOP (Local Outlier Probabilities) values for µ =3

and FCM is because we have 225 SOM nodes which are
significantly less than the total number of data points clustered
using K-means and FCM. However, the DBI result shows
that SOM outperforms K-means and FCM algorithms. Lower
DBI indicates densely populated and well separated clusters
rendering the insights extracted from SOM more reliable.

For the hypotheses stated earlier, we can summarize the
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TABLE II
CLUSTERING EFFICIENCY COMPARISON

Method Number of iterations SSE DBI
K-means 81 2156788.2 15.68

Fuzzy C-means 23 2822823.5 17.98
Clustered SOM 48 1136.6 12.89

following as findings of our analysis:
• Both the K-means and SOM leverage unsupervised cluster-

ing to identify spatio-temporal patterns linked with high fault
lead times.

• Clustered SOM yields lower error metrics; hence it pro-
duces clustering results that have a higher credibility.

• LoOP applied on SOM results in efficient and more
focused anomaly detection in NFL data.

• The analysis of clustered data reveals that that highest
fault resolution lead times are attributed to the summer months
(May-July) and have a higher occurrence probability in regions
1 and 2. Most of these faults are caused by “Sync Loss” and
“Slow browsing” issues.

• To enable efficient proactive self-healing mechanisms in
future, the network operator must devise a SON engine that
leverages insights from applying the highlighted data mining
techniques on the continuously produced NFL.

VI. CONCLUSIONS

In this paper, we have used different data mining techniques
for extracting critical network pain points and anomalies from
the CRM based broadband network failure log database of a
nationwide operator. We have considered multiple unsuper-
vised clustering techniques and density based local outlier
detection algorithms as tools for our analysis. Our results
indicate that SOM outperforms K-means and Fuzzy C-means
when clustering the complaints in the NFL dataset with lower
DBI value. The anomaly detection results show that LoOP
values are more reliable in detecting the anomalous nodes in
the SOM network due to their independence of the MinPts
factor.

We have also analyzed the SOM and K-means clustered
data based on the Lead Time KPI. The insights from the
clustering analysis highlight the dates in the calendar year,
geographical locations, critical times of the day and severe
fault causes that are likely to be associated with longer outages.
Similarly, the anomaly detection algorithms identify the spatio-
temporal signatures of the rarely occurring network faults. To
enhance customer retention and improve QoS, the operator
should adapt a proactive self-healing strategy to minimize
customer complaints and network outages in the highlighted
critical spatio-temporal regions.
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