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Abstract—Today, the importance of cellular networks is ever-

growing. The increasing complexity of networks is expected to 

decrease reliability. In order to continue reliable operation in a 

cost-efficient manner, previous literature has explored Proactive 

Self-Healing methods, but actual application to cellular networks 

has been lacking. Thus, in this paper, we aim to institute a 

proactive approach for failure prediction of time series data by 

surveying a wide range of techniques. To determine the best in 

predicting network failures, Support Vector Machine (SVM) 

Regression and multiple Neural Network variants were utilized 

along with a Continuous Time Markov Chain (CTMC) analytical 

model to provide reliability analysis. All results are derived from 

actual network data. We conclude the pattern of these failures is 

most likely non-linear, and the most promising technique is a Deep 

Neural Network utilizing Autoencoders. The CTMC analysis 

demonstrates that current networks barely reside in a healthy 

state, so the goal is that this paper will lead to improvements, 

especially in Self-Organizing Networks (SON).   

Keywords—Self-Organizing Networks (SON), Proactive Self-

Healing, Fault Prediction, Support Vector Machine (SVM), Neural 

Networks, Continuous Time Markov Chain (CTMC) 

I. INTRODUCTION 

In the modern world, the usage of cellular devices in our 
daily lives is immense.  However, the future holds even more 
growth, and developments could transcend human imagination. 
This will only bring upon a growth of cellular network activity. 
While the improvements in our devices continue to increase at a 
dramatic pace, networks are evolving at a much slower rate. This 
disparity is resulting in an inefficient system which is not only 
producing a high number of faults but also causing trouble to the 
customer. and software that constitute the mobile network.  In 
fact, the faults induce cell outages that ultimately affect the 
coverage and performance reliability of the cellular network. 
Faults occur either by base station hardware and/or software 
malfunctions, power outages, faulty links, multi-vendor 
incompatibility, or misconfiguration of parameters during 
network operation. Moreover, the rate of faults is intrinsically 
proportional to cell density, and complexity of hardware and 
software that constitute the mobile network. This compromises 
network reliability, which is defined as the fraction of time the 
network, including its components, is operational.  

 

Fig. 1.   Percentage of Faults in Given Time Interval 

 

Hence, the results of these faults are a drop in quality of 
service provided to the customer and a dramatically increased 
cost for the provider as maintenance times remain high, and the 
network remains in the sub-optimal state. The problem lies in 
the current reactive approach utilized by most carriers. This way 
only responds to the problem and can only hope to limit the 
magnitude of the problems caused, not prevent it from 
happening. This method is not experiencing the best success as 
when the people need to make calls the most, the network 
experiences the greatest number of faults. From the data set, 
which was an array of timestamped faults in a month from a 
national US mobile operator, Fig. 1 was generated.  

Fig. 1 displays that during lunch (usually time interval 12 to 
15), the greatest number of faults occurred. Also, there was a 
significant number of faults after lunch (15 to 18). However, 
there is also a surprise time of 21 to 24 with a high number of 
faults, and this is believed to occur due to the availability of free 
minutes during this time which incentivize talking. 

Regardless of the time interval, it is important for the 
customer to have a reliable network when they need to make 
calls. This is why predictive analysis, a proactive approach, is 
necessary due to its effectiveness. Intending to deal with the 
problem before it happens, predictive analysis utilizes 
mathematical algorithms, such as various modeling techniques, 
to illustrate the relationship among functioning variables of a 
system. These models are able to learn the behavior of the 
system under normal conditions based on these variables, and 
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they can also monitor the patterns that forecast a troublesome 
scenario. Specifically, in telecommunications, carriers would be 
able to estimate that a fault is going to occur in a certain amount 
of time, and thus, could take steps to prevent this fault. This 
would eliminate any possible difficulties that a customer would 
experience and is much better than the reactive approach, which 
can only hope to limit the trouble the customer must suffer.  

The increased volume of literature seen for these predictive 
analysis techniques in recent years is a promising sign. While 
many papers have looked at different techniques for time series 
fault prediction [1] [2] [3], this paper has some unique 
characteristics to differentiate it. The first is the field of 
telecommunications as many papers have not covered the 
application of techniques to network failures. Furthermore, this 
paper applies a wide range of techniques, including both 
regression models and analytical models, an attribute absent in 
most papers. Furthermore, most importantly, this paper’s most 
important contribution to current literature is that it utilizes 
actual data for a network in its calculations. Specifically, the 
presented analysis is based on one month timestamped faults 
data from one of the national mobile operators of USA. Many 
other papers have not had the luxury of having access to real 
data, which has been a roadblock in analysis.  

The goal of this paper is to provide meaningful insight into 
the success of various techniques for network failure and act as 
a springboard for future research. Specifically, the application of 
these techniques to Self-Organizing Networks (SON), defined 
by [4], could provide a powerful combination which is then able 
to not only autonomously predict these failures, but also apply 
self-healing techniques to prevent the problem from occurring. 
This holds great promise for both the consumer and the provider 
as it can not only drastically improve the quality of the network, 
but it can also optimize a network, reducing labor and other costs 
for network providers. 

II. RELEVANT WORKS 

Existing fault prediction involves the use of several models. 
However, many of these are only pertinent to specific time-
series data and have not utilized cellular network data. [1] 
utilized several techniques for failure and reliability of time 
series data and found that Support Vector Machine Regression 
either outperformed or was comparable to all other techniques 
tested in the paper. Yet, this paper’s data set was limited to car 
engines. While this paper had a time series data for failure, it 
cannot be compared to network failures because of the sheer 
difference in factors which affect failure in engines and factors 
which affect failure in cellular networks. In fact, 
telecommunications networks have a much higher number of 
entities and parameters than engines, resulting in higher fault 
arrival rates.  Furthermore, [2] looked at recurrent neural 
networks, specifically Infinite Impulse Response Locally 
Recurrent Neural Networks (IIR-LRNN), and found a novel 
approach to efficient failure and reliability predictions. 
However, as previously mentioned, the data set of car engines 
does not translate to the field of telecommunications. In 
addition, [3] found that Deep Recurrent Neural Networks, which 
utilize Autoencoders, perform significantly better by RMSE 
comparison than other techniques. This paper utilized a time 
series data; however, it was for energy load forecasting. 
Moreover, many papers that deal specifically with cellular 

network reliability have employed analytical models rather than 
prediction techniques. [5] used event-based reliability model 
and the Markov process to propose a model for global reliability 
measurement for telecommunication networks that have link 
failures, which make them statistically dependent. However, the 
authors themselves were only able to provide a case study and 
highlight the need for the use of the actual failure rate and repair 
rate of a network to gain a better understanding of network 
failure [5]. Another variation was employed by [6] which 
proposed a Continuous Time Markov Chain reliability analysis, 
with a focus on various transient analyses for cellular networks. 
Continuing with the recurring trend, [6] was only able to 
demonstrate the model with three case studies due to lack of 
actual cellular network data. This paper builds on all of these 
past papers and utilizes elements from each. It combines 
prediction techniques with analytical models to provide a wide 
survey of methods and also employs real cellular network data 
to contribute a better understanding of failure and reliability 
analysis in the telecommunication field.   

III. METHODOLOGY 

A. Overview 

This section investigates different prediction techniques and 
also utilizes a mathematical technique to formulate a model and 
various transient analyses. Many of the following techniques 
were chosen because of past success in previous papers 
involving time series data [1] [2] [3], but general insight into 
prediction methods was provided by [7]. The importance of 
prediction techniques is clear since they are the prerequisite to 
proactive fault management. Moreover, in order to differentiate 
among performance by the following techniques, Normalized 
Root Mean Square Error (NRMSE) was used for the error 
calculation. This is a frequently used measurement which 
aggregates individual residuals into a single measure of 
predictive power. NRMSE provides distinct advantages, the 
primary being that is a non-dimensional forms of the Root Mean 
Square Error (RMSE) which increases usefulness by allowing 
for comparison between RMSE with different units. 
Furthermore, NRMSEs avoid the highly undesirable use of 
absolute value in calculations and are able to best reveal 
differences in model performance due to the higher weight given 
to unfavorable conditions. While many different methods exist 
to calculate NRMSE, in this paper, the method used to calculate 
NRMSE is: 

𝑁𝑅𝑀𝑆𝐸 = √
∑(𝑦𝑡 − �̂�𝑡)2

∑ 𝑦𝑡
2

  (1) 

where 𝑦𝑡  is the actual value, and �̂�𝑡 is the predicted value.  

B. Regression Models 

Functional regression models were chosen because they 
serve as a baseline for comparison with other models for 
determination of the level of success of the other techniques. 
Linear regression is one of the simplest methods of prediction as 
it aims to establish a linear relationship between two variables. 
In this case, the variables were fault occurrence, represented by 

𝑛  for the 𝑛𝑡ℎ fault occurrence, and the inter-arrival times in 

hours, represented by 𝜏𝑛 for the 𝑛𝑡ℎ fault. The data was divided 
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up into training data, which composed ¾ of the data, and testing 
data, which composed the remaining ¼ of the data. Using the 
curve fitting tool in MATLAB, an equation was generated from 
the training data. This equation was:  

𝜏𝑛 = 0.003454 ∗ 𝑛 + 2.246  (2) 
Exponential Regression is similar to linear regression but 
instead aims to fit the data to an exponential function with the 

form 𝑓(𝑥) = 𝑎 ∗ 𝑒𝑏∗𝑥 instead of a linear function. Once again, 
the curve fitting tool in MATLAB was utilized, and the 
resulting equation from the training data was: 

 𝜏𝑛 = 2.304 ∗ 𝑒0.001161∗𝑛  (3) 

C. Equations 

Support Vector Machine (SVM) rise from statistical learning 
theory and are popular learning methods. This technique was 
chosen because [1] found that SVM Regression was comparable 
to or outperforming a wide range of techniques on time series 
data. A SVM model represents points in a space and attempts to 
map them such that there is a clear space as wide as possible. 
This space is then divided by a hyperplane for regression 
purposes. While this hyperplane may be a linear function, SVMs 
can also use a kernel trick that allows utilization of a non-linear 
function by mapping inputs into higher-dimensional spaces [8]. 
For this paper, the SVM Regression was calculated in MATLAB 
which implements linear epsilon-insensitive SVM (ε-SVM) 
regression or L1 loss [8]. This includes predictor variables and 
observed response values in the training data. The SVM 
attempts to find a function f(x) that is no greater than an epsilon 
value, ε, deviation from yn, the observed response values, for 
each training point x. An optimization problem is formed which 
is solved in its Lagrange dual formulation in MATLAB [8]. This 
is obtained by constructing a Lagrangian function from the 
primal function by introducing nonnegative multipliers 𝛼𝑛 and 
𝛼𝑛

∗  for each observation 𝑥𝑛 . Then, the Lagrangian function is 
minimized subject to the constraints: 

 

∑(𝛼𝑛 − 𝛼𝑛
∗

𝑁

𝑛=1

) = 0 

∀𝑛: 0 ≤  𝛼𝑛 ≤ 𝐶 
∀𝑛: 0 ≤  𝛼𝑛

∗ ≤ 𝐶 

(4) 

where the constant C is the box constraint, a positive numerical 
value that controls the penalty imposed on observations lying 
outside the epsilon margin (ε) to prevent regularization. In order 
to obtain optimal solutions, Karush-Kuhn-Tucker (KKT) 
complementarity conditions are utilized as the optimization 
constraints. These conditions indicate that all observations 
inside the epsilon tube have non-zero Lagrange multipliers  
( 𝛼𝑛  and 𝛼𝑛

∗ ), which lends the name support vectors. 
Furthermore, the function used to predict new values depends 
only on the support vector and is given as:  

 

𝑓(𝑥) =  ∑(𝛼𝑛 − 𝛼𝑛
∗ ) 𝐺(𝑥𝑛 , 𝑥

𝑁

𝑛=1

) + 𝑏 (5) 

where 𝐺(𝑥𝑛 , 𝑥) is the kernel function. In MATLAB, the kernel 

function for linear SVM Regression is: 

 𝐺(𝑥1, 𝑥2) =  𝑥1′𝑥2 (6) 

and for Gaussian or RBF Regression, the kernel is [8]: 

 𝐺(𝑥1, 𝑥2) = exp(−‖𝑥1 − 𝑥2‖2) (7) 

D. Neural Networks 

Artificial Neural Network (ANN) is a machine learning 
technique which takes its inspiration from biological neural 
networks, with both consisting of the same basic components. 
ANNs are a very popular technique for forecasting, and many 
variations were utilized to determine which variation had the 
greatest success. Both [2] and [3] showed high levels of 
achievement in forecasting ability with their respective 
techniques, so similar techniques were included. Furthermore, 
[9] demonstrated the effectiveness of Neural Networks for 
forecasting in complex systems. ANNs have individual neurons 
that act as a processing unit by taking in one or more input to 
product an output. At all neurons, an associated weight is 
assigned to every input, and this is able to adjust the strength. 
The neuron then proceeds to sum all the inputs and calculate an 
output to be passed on. Mathematically, this is represented by 
[10]: 

 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑖1𝑤1 + 𝑖2𝑤2 + 𝑖3𝑤3 + ⋯ + 𝑏𝑖𝑎𝑠) (8) 

For this paper, two applications were utilized in MATLAB. 
The Neural Network Fitting application and the Neural Network 
Time Series application were both employed to observe results. 
Both applications split the training data into a set that consisted 
of 70% training values, 15% validation values, and 15% testing 
values. However, the actual performance was computed by 
using these networks to predict fault inter-arrival times for the 
testing data, and the resulting values were utilized to compute 
the error. In the Neural Net Fitting Tool, the number of hidden 
neurons was experimented with to achieve the best results. Each 
attempt was replicated three times and then averaged to compute 
errors. In addition to varying the neurons, two different 
algorithms, Levenberg-Marquardt and Bayesian Regulation, 
were utilized. The results presented in the Results section 
represent only the most successful combination of these two 
factors. The most success was achieved with the Neural 
Network having 20 neurons and was trained with Levenberg-
Marquardt. The Neural Net Fitting Tool utilizes both fault 
occurrence and inter-arrival times to construct a network. It 
utilizes a two-layer feed-forward network. This addition of 
“hidden” layers between input and output layers requires an 
activation function, which is usually non-linear, and in this case, 
is a sigmoid function.  

Furthermore, Neural Net Time Series Tool was utilized to 
create a Nonlinear Autoregressive (NAR) Network. While [2] 
did utilize IIR-LRNN for its results, it is more suitable to utilize 
NAR for this data because the desired predictions depend on the 
past values. NAR predicts fault inter-arrival times given the d, 
the delay value, past values of the fault inter-arrival times. In 
addition to varying neurons and algorithms, delays were also 
varied to achieve best results. The most success was achieved 
with the parameters of 10 neurons, 5 delays, and training with 
Levenberg-Marquardt. The network remains a two-layer feed-
forward network, so the previous math still applies; however, 
the important difference is that values only depend on fault inter-
arrival times and not fault occurrence. 

E. Deep Neural Networks  

An autoencoder is a type of neural network which consists 
of an encoder and a decoder. It is trained to replicate its input at 
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its output through these mechanisms. The encoder maps the 
input to a hidden representation, and the decoder attempts to 
map this hidden representation back to the original input. This 
technique was selected because [3] found that autoencoders 
significantly improved prediction compared to all other neural 
network techniques. Furthermore, [11] finds that autoencoders 
tested on probable inputs have small reconstruction error 
because the autoencoder learns to stay on the manifold by 
learning salient variations. The autoencoder function was used 
in MATLAB, and the default 10 neurons in the hidden layer 
were utilized. The autoencoder was trained on the testing data 
and then converted into a neural network. This network was then 
tested on the testing data to compute the NRMSE and RMSE. 
The training process of an autoencoder is based on optimization 

of a cost function, which measures the error between input 𝑥 

and its reconstruction at the output �̂�. The vector 𝑥 ∈ ℝ𝐷𝑥  is 

mapped to 𝑧 ∈ ℝ𝐷(1)
 by:   

 𝑧(1) = ℎ(1)(𝑊(1)𝑥 + 𝑏(1)) (9) 

where the superscript (1) is the first layer. ℎ(1): ℝ𝐷(1)
→

ℝ𝐷(1)
 is a transfer function for the encoder, 𝑊(1) ∈

ℝ𝐷(1)∗𝐷𝑥  is a weight matrix, and 𝑏(1) ∈ ℝ𝐷(1)
is a bias 

vector. The decoder then maps the encoded representation z 
back to an estimate of the original input vector, x, by: 

 �̂� = ℎ(2)(𝑊(2)𝑥 + 𝑏(2)) (10) 

where subscript (2) is the second layer. ℎ(2): ℝ𝐷𝑥 → ℝ𝐷𝑥  is the 

transfer function for decoder, 𝑊(1) ∈ ℝ𝐷𝑥∗𝐷(1)
 is a weight 

matrix, and 𝑏(2) ∈ ℝ𝐷𝑥  is a bias vector. This is the 
mathematical representation for one layer, but the math remains 
the same for additional layers of the autoencoder.  

F. Continuous Time Markov Chain Analysis  

Continuous Time Markov Chain is the analytical model 
chosen to analyze the data. The model was chosen because [6] 
proposes various transient analyses that can provide additional 
insight into the state of the cellular network, which otherwise, 
would not be available. This is because CTMC can yield more 
scalable solutions since it is memory-less as only the crux of the 
past faults is captured by transition probabilities.  Furthermore, 
CTMC can also be used to formulate a predictive model, giving 
it dual capability. The exploitation of Continuous Time Markov 
Chain (CTMC) analysis is possible due to the exponential 
distribution of both the fault inter-arrival times and maintenance 
times as shown in Fig. 2 and Fig. 3, respectively. The 
exponential distribution is mathematically tractable, and hence 
it is possible to use Continuous Time Markov Chain analysis. 

For the following analysis, the network can only reside in 
two states: healthy and sub-optimal. The μ value for fault inter-
arrival times is 1/(mean value). In this case, it is 0.38625. The λ 
value for maintenance time is calculated in a similar way and is 
0.01589. Using these values, a generator matrix Q and a rate 
matrix R can be calculated. The calculations for a two-state 
system are given as: 

 𝑄 =  [
−𝜇 𝜇
𝜆 −𝜆

] 

𝑅 =  [
0 𝜆
𝜇 0

] 
(11) 

 
Fig. 2.      Exponential Fit of Fault Inter-Arrival Time 

 
Fig. 3.     Exponential Fit of Maintenance Time 

 
Using these two matrices, various transient analyses can be 

performed. The behavior of CTMC is described by the 
Kolmogorov differential equation and can be found using the 
generator matrix Q. Then, the probability vector can be obtained 

by 𝑃(𝑡) = 𝑃(0) ∗  𝑒𝑄(𝑡) with P(0) being the initial probability 
vector. This paper utilizes the uniformization method because it 
leads to more efficient computation and results in higher 
accuracy.  

Using this, a probability vector is calculated by:  

 
𝑃(𝑡) =  ∑ 𝑒−𝛽𝑡

(𝛽𝑡)𝑘

𝑘!
�̂�𝑘

∞

𝑘=0

 (12) 

This series utilizes the Probability Transition Matrix, �̂� = 𝐼 +
𝑄/𝛽 , and the summation can be truncated with the error 
formula: 

 

𝜀 = 1 − ∑ 𝑒−𝛽𝑡
(𝛽𝑡)𝑘

𝑘!

𝑀

𝑘=0

 (13) 

Algorithms used to truncate the infinite summations to a desired 
error value were derived from [12]. For this paper, an error 
value of 0.0001 is utilized. The Probability Transition Matrix 
forms the foundation for computation of three performance 
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matrices that are utilized in this paper. The first is occupancy 
time which is computed by placing 

 
𝛹𝑖,𝑗(𝑇) =  ∫ 𝑝𝑖,𝑗(𝑡) 𝑑𝑡

𝑇

0

 (14) 

in matrix form, where 𝑝𝑖,𝑗(𝑡) is the element of transition 

probability matrix P.  

 The second is first passage time, which is the expected time 

for the system to pass from an optimal state to the suboptimal 

state. This utilizes the following equation: 

 
𝑟𝑖𝜁𝑖 = 1 + ∑ 𝑟𝑖,𝑗𝜁𝑗

𝑁−1

𝑗=1

, 1 ≤ 𝑖 ≤ 𝑁 − 1 (15) 

where 𝑖, 𝑗 ∈ 𝑆 and 

 
𝑟𝑖 = ∑ 𝑟𝑖,𝑗

𝑁

𝑗=1
 , 𝑹 =  [𝑟𝑖,𝑗] (16) 

The third is steady-state or limiting distribution. This is 
defined as 𝛹 = [𝜓1 𝜓2] where 

 𝛹𝑗 = lim
𝑡→∞

Pr (𝑋(t) = 𝑗) (17) 

and 

 

𝜓𝑗𝑟𝑗 = ∑ 𝜓𝑖𝑟𝑖,𝑗

𝑁

𝑖=1

 

∑ 𝜓𝑖

𝑁

𝑖=1

= 1 

(18) 

Solving this yields the steady state distribution for the network.  

 Furthermore, a model was generated from the transient 
probability vector. The model was developed by calculating the 
probability of a fault after a certain amount of time and 
considering it a detection of a fault if the value met a designated 
threshold level. For this paper, the model was checked every 4 
hours with a threshold level of 75%. The model was awarded a 
1 for correct predictions, 0 for incorrect predictions, and a 
resulting percentage was calculated. This model can also be 
updated by adjusting values with new prediction values, with 
techniques such as exponential smoothing. However, this is 
irrelevant for this model because the probability transition 
matrix values are too high to be effected since maintenance time 
is much higher than fault inter-arrival time.  

TABLE 1     RESULTS OF PREDICTION TECHNIQUES 

Results 
Performance on Test Data 

Technique NRMSE RMSE 

1 

Deep Neural Network with 

Autoencoders  

0.122092 0.504425 

2 
Nonlinear Autoregressive Neural 

Network  

0.776133 3.206542 

3 
Gaussian Kernel Support Vector 

Machine Regression 

0.783231 3.235869 

4 Exponential Regression 
0.783803 3.238231 

5 Linear Regression 
0.784666 3.24798 

6 Neural Network 
0.792844 3.29789 

7 
Linear Support Vector Machine 

Regression 

0.802023 3.313506 

IV. RESULTS 

The results from the models are summarized in Table 1. The 
results indicate that most of the models had relatively the same 
success in predicting the fault’s inter-arrival time on the test 
data, besides the deep neural network with autoencoders. The 
huge improvement in NRMSE demonstrates significantly better 
effective fault prediction than all other techniques. This is 
explained by [13] as it discusses that pretraining each layer with 
an unsupervised learning algorithm can allow for better initial 
weights, and thus is why autoencoders produce drastically better 
results. In addition, the other significant conclusion is that the 
linear models performed worse than their nonlinear 
counterparts. This shows that the data does not follow a linear 
trend and is much more complicated. Furthermore, while most 
of the NRMSE values are relatively high, it should be noted that 
since the models attempt to predict the failures of the whole 
network instead of one base station, it is expected.  

Furthermore, the results of the CTMC analysis provide 
crucial information about the reliability of the entire network. 
These analyses can be adapted each time for new values in order 
to compute new expected times for occupancy times, the first 
occurrence of a fault, and steady-state distribution. The transient 
analysis using the probability matrix in Fig. 4 shows that the 
probability that the network switches from healthy to unhealthy 
is very high. In fact, after 12 hours, there is a 95% chance that 
the system is in an unhealthy state.  

 

Fig. 4.      Transient Analysis for First Day of Network 

 

Fig. 5.         Occupancy Times for a Month 

  

1 3 6 12 15 18 24

Healthy State 0.68 0.33 0.13 0.05 0.05 0.04 0.04

Sub-Optimal State 0.32 0.67 0.87 0.95 0.95 0.96 0.96
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Fig. 6.        Steady-State Distribution for Lifetime of Network 
 

 After one day, the value for sub-optimal state remains 
constant at 0.9605. However, using these probability values, a 
possible model can be made. For demonstration, a model was 
developed that used a 75% threshold level to signify that a fault 
has occurred. The model was checked every four hours for a 
week, and the prediction accuracy was given a 1 for a correct 
prediction and a 0 for an incorrect prediction. The model’s 
accuracy was a 27/42 or 64.29%. Another advantage provided 
by this model is that it avoids type 2 errors which cause the most 
amount of damage.  

 The results of the occupancy time analysis presented in Fig. 
5 show that the network for a month’s time (31 days) will spend 
on average only 1.3 days in the healthy state and 29.7 days in a 
sub-optimal state. This shows the need for networks to have a 
better proactive approach in order to reduce the number of faults 
occurring in order to improve quality for the customer. The first 
passage time was calculated to be 2.589 hours which is in 
accordance with the mean fault inter-arrival time of 2.589 hours. 
This makes theoretical sense as the CMTC analysis is based on 
the fact that both variables follow an exponential distribution.  

 The steady-state distribution as illustrated in Fig. 6 also 
confirms the need for a proactive approach. The distribution 
found that during its lifetime, the network will spend only 3.95% 
of it time in the healthy state, while it will spend a massive 
96.05% of its time in a sub-optimal state. Such a high sojourn 
time in the sub-optimal state is due to the fact that we considered 
fault series data from multiple base stations instead of a single 
base station. This highlights the fact that massive densification, 
aimed for 5G, is consequently going to increase the fault arrivals 
and Proactive Self-Healing, capable of forecasting network 
faults in advance before subscribers are affected, is very much 
needed for reliable operation in 5G cellular networks.  

V. CONCLUSIONS & FUTURE WORK 

The results provided by the real data highlight some 
troubling phenomena. They confirm the ineffectiveness of the 
current reactive techniques as the transient analysis demonstrate 
the very high probability of transitioning from healthy to sub-
optimal state and a lifetime expectancy of only being in the 
healthy state 4% of the time. This is bad news for both the 
consumer and the network provider, and it underscores the need 
for a change in approach. Predictive techniques might be that 
answer. While most did not have great success, it is clear that 
nonlinear models did better than linear counterparts. This shows 
that the pattern is complex and non-linear.  

Thus, it is logical that the most successful technique was 
Deep Neural Network with Autoencoders, and hence shows the 
most promise for future application in SON. Moreover, the 
scope of the current work is limited to evaluating prediction 
accuracy, and the data was considered cumulatively for a 
cellular network. However, for future work, the same method 
can be applied for a per-base station study. The per-base station 
data can be used to localize faults so that once the predicted fault 
occurrence time is near, the network prioritizes the verification 
of each base station or initiates the configuration of parameters. 
This can be further complemented by proactive cell outage 
compensation algorithms detailed by [14], which by knowing 
future fault arrival times, can take preemptive actions to 
reconfigure the network. This will prevent outages from 
occurring and help the network continue to run reliably. Future 
research regarding the application of other deep neural network 
learning techniques should also be explored as a possibility. 
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