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Abstract—Increased network wide energy consumption is a
paramount challenge that hinders wide scale ultra-dense net-
works (UDN) deployments. While several Energy Saving (ES)
enhancement schemes have been proposed recently, these schemes
have one common tenancy. They operate in reactive mode i.e.,
to increase ES, cells are switched ON/OFF reactively in response
to changing cell loads. Though, significant ES gains have been
reported for such ON/OFF schemes, the inherent reactiveness of
these ES schemes limits their ability to meet the extremely low
latency and high QoS expected from future cellular networks
vis-a-vis 5G and beyond. To address this challenge, in this paper
we propose a novel user mobility prediction based AUtonomous
pROactive eneRgy sAving (AURORA) framework for future
UDN. Instead of observing changes in cell loads passively and
then reacting to them, AURORA uses past hand over (HO)
traces to determine future cell loads. This prediction is then
used to proactively schedule small cell sleep cycles. AURORA
also incorporates the effect of Cell Individual Offsets (CIOs)
for balancing load among cells to ensure QoS while maximizing
ES. Extensive system level simulations leveraging realistic SLAW
model based mobility traces show that AURORA can achieve
significant energy reduction gain without noticeable impact on
QoS.

Index Terms—5G, Energy Saving, Mobility Prediction, Proac-
tive SON, Heterogeneous Networks, Sleeping Cells, ON/OFF
Small Cells, CIOs.

I. INTRODUCTION

Network densification is currently being treated with a mix
of anticipation for its promise of addressing the capacity
crunch - and concern for its impact on the energy consumption.
This is due to the high aggregated network energy that "always
ON" small cells (SCs) are bound to consume in an Ultra Dense
Network (UDN). In addition to higher carbon footprint, this
translates into higher OPEX. Although SCs have a relatively
lower power consumption profile, the always ON approach
increases overall network wide energy consumption [1]. As
a result, with advent of UDN, the need for ES schemes will
be even more compelling. The initial ambivalence about UDN
has been replaced by consensus that to avert possible energy
crunch in 5G, the 1000x capacity increase must be achieved
at a similar or lower power consumption as legacy networks
[2]. Energy consumption in cellular systems can be reduced
either by optimizing resource allocation such that minimum
energy is consumed per bit transmission or by turning OFF
underutilized cells during offpeak hours [2]–[5]. To exploit
these approaches recently ES has been adopted as a key Self
Organizing Network (SON) function by 3GPP [6] and has
been extensively studied in literature. The resource allocation
optimization can reduce the energy consumption to only a

limited degree for a given system throughput target. ES of
the cellular systems can be further enhanced significantly
by switching under-utilized BSs to sleep mode or turning
them OFF entirely during off-peak time [3]–[5], [7]. In this
direction of research, several recent works show promising
results in terms of potential ES. A detailed survey of current
ES schemes can be found in [2]. However, to the best of our
knowledge, existing ES approaches fall short of the mark for
5G requirement due to following limitations:

1) Reactive mode of operation: Conventional ES SON
algorithms are designed to switch OFF/ON cells after
detecting network conditions that have already taken
effect. However, given the acute dynamics of traffic and
cellular environment, by the time triggering conditions
are detected and a realistic non-convex NP-hard ES
algorithm is solved to produce new network ON/OFF
configuration optimal for observed network conditions,
the conditions may already change. Thus, the newly de-
termined configuration is likely to be suboptimal before it
can be actuated. This problem can particularly exacerbate
in 5G.

2) Difficulty in meeting 5G low latency: Base Stations
require a certain amount of time to wake up from sleep
cycle. For a user entering a sleeping cell, this time to
wake up will negatively impact latency observed by the
users.

3) SON conflict prone design: Conventional ES solutions
do not take SON conflicts into account. Two SON use
cases that become highly relevant to the ES in HetNets
are Coverage and Capacity Optimization (CCO) and Load
Balancing (LB) [6] because of the overlap among their
optimization parameter set: transmission power and cell
individual offsets (CIOs). When an ES switches OFF
some cells, it may force some users to be associated to
neighboring ON cells and overload them thereby conflict-
ing with CCO and LB SON functions. As explicated in
[8], such conflict prone ES solution design can actually
degrade network’s performance instead of improving it.

To address the aforementioned limitations, we propose a
novel ES solution called AURORA. AURORA builds on the
Big Data empowered SON framework presented in [9]. The
key idea is to make emerging cellular systems artificially
intelligent and autonomous so that they can anticipate user
mobility behavior. This intelligence in turn is then used to
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formulate a novel ES optimization problem that proactively
schedules small cell sleep cycles to divert and focus the
right amount of resources when and where needed while
satisfying QoS requirements. The contributions of paper can
be summarized as follows:

1) We develop and analyze a semi-Markov model based
spatio-temporal mobility prediction framework and fur-
ther propose a novel method to map the next cell
spatiotemporal HO information to the estimated future
location coordinates based on the idea of Landmarks. This
information is then transformed into future cell loads.

2) Based on the intelligence gained from the mobility model
i.e., future cell loads, a proactive energy saving opti-
mization problem is formulated to minimize the energy
consumption by switching OFF underutilized SCs. An-
other key novelty is that AURORA leverages CIOs as
optimization variables for avoiding overloading scenarios
while deciding which cells to switch ON/OFF.

3) We perform a comparative analysis of proposed solution,
through multi-tier system level 3GPP compliant rigorous
simulations, in Low and High Traffic demand scenarios
with the latter comprising of all video users, against
several benchmarks. We analyze the impact of cell load
thresholds on ES gains and QoS. AURORA achieved 68%
and 99% gain in the total network energy reduction for
low and high traffic demand scenarios respectively by
putting under-utilized SCs in sleep mode with negligible
number of unsatisfied users. It is noteworthy that as long
as mobility is predictable with 55% or higher accuracy,
AURORA continues to yield Energy Reduction Gain.

II. AURORA FRAMEWORK

A. Semi-Markov based Spatiotemporal Next Cell Prediction

The mobility prediction model developed in this work builds
on our recent study validated in real network [10] that exploits
following idea: Next cell can be predicted by modelling user
transition from one cell to another as a Markov stochastic
process and using HO history to estimate state transition
probabilities. Discrete Time Markov Chain (DTMC) has been
commonly used in the literature for mobility prediction pur-
poses. The reason being that the Markov based scheme can
yield more scalable solution as it does not need to store users’
past movements. Instead the crux of this information is cap-
tured by transition probabilities. However, DTMC is memory
less and assumes transition probability is independent of cell
sojourn time. Considering these limitations, DTMC model
based works only resort to spatial prediction i.e., identification
of future cell only, without any information about the time at
which handover may take place. However, human mobility
exhibits memory property and can be best approximated with
power law (heavy tailed) distribution instead of memory less
exponential distributions [10]. Fortunately, Semi-Markov is an
advanced class of Markov models that allows for arbitrary
distributed sojourn times. Few recent works have characterized
prediction accuracy performance of Semi-Markov based model
for mobility prediction [10], [11]. However, to the best of

our knowledge, this study is the first of its kind that presents
spatio-temporal mobility prediction model, and a framework to
transform that prediction into future cell load estimates. It then
uses those load estimates to devise and analyze a proactive and
QoS aware energy saving solution.

We begin by modeling user mobility as a Semi-Markov
renewal process {(Xn, Tn) : n ≥ 0} with discrete state space
C = 1, 2, 3 . . . , z where Tn is the time of nth transition, Xn

is the state at nth transition and total of z cells. Each cell
is represented by the state of the Semi-Markov process, and
a handover from one cell to another is considered as state
transition. It is assumed that the process is time-homogeneous
during the time period in which the model is built. The
associated time-homogeneous Semi-Markov kernel for user
‘u’ which is the probability of transition to jth cell if user
has already spent time t in ith cell is defined as:
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to j, P(u) is the probability transition matrix of the embedded
Markov chain of user ‘u’given as
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and S(u)
i,j (t) is the sojourn time distribution of user ‘u’in cell

i when next cell is j. The probability that the user ‘u’ in cell
i will leave cell i before or at time t regardless of the next
cell is defined as:

Λ
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Now the time-homogeneous Semi-Markov process of user ‘u’
is defined as X = (Xt, t ∈ R+

0 ) with state transients as:
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where δi,j is the Kronecker function that is only equal to 1
when i = j. Integral equations (10) and (11) are Volterra
equations of the first and second kind and the integral is the
convolution of ψ(u)

i,m(.) and φ(u)
m,j(.) i.e., ψ(u)

i,m ∗ φ
(u)
m,j . It gives

the probability that user ‘u’ starting in cell i will be in cell
j by t. The first part of the right-hand side is the probability
that the user, being in cell i, never leaves cell i until the end
of the period t. The second part of the right-hand side of
equation accounts for all cases in which the transition from i to
j occurs via another cell m 6=i applying the renewal argument.
The evolution equation (10) can be re-written for discrete-time
homogeneous semi-Markov process as:
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As P(u) is right stochastic matrix therefore ψ(u)(k)
and φ(u)(k) will also be a right stochastic matrices i.e.,∑z

j=1 ψ
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i,j (k) =
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i,j (k) = 1, ∀i, j ∈ C. The φ(u)

i,j (k)
gives the probability that the user ‘u’ is in cell j after k amount
of time from the time instant when he/she made transition
from somewhere to cell i. However, to predict the location
of a user at every k′ time steps, we have to estimate the
probability φ̂
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i.e., probability that a user is in cell j after k′ time given that
the current cell is i and user has stayed in cell i for sojourn
time tsoj = s. It can be evaluated as [11]:
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Note that for s = 0 : φ̂(u)
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(u)
i,j (k). Utilizing the

past handover history of user ‘u’ <time, Cell ID>, Probability
transition matrix P(u) and sojourn time distribution matrix
S(u) are initialized as follows [10]:
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where N (u)
i,j is the number of handovers of user ‘u’from cell

i to j, N (u)
i,j,k is the number of handover of user ‘u’ from

cell i to j with sojourn time less than or equal to k and
N

(u)
i is the total number of handovers of user ‘u’ from cell

i. Whenever there is a handover from cell i to j, it updates
p
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i,j (k) and computes ψ(u)
i,j (k). Finally φ(u)

i,j (k) and

φ̂
(u)
i,j (k′, s) are computed. The cell with highest probability is

chosen as the predicted future destination i.e., max
j∈Ni

φ̂
(u)
i,j (k′, s)

where Ni is set of all neighboring cells of cell i. In this way,
after every k′ time steps, the next HO tuple information for
each UE {CuN , T

u
HO} is generated wherein CuN is next probable

cell of user ‘u’ at time T uHO.

B. Future Location Estimation

Let the UE’s current location coordinates at time instant k be
luk = (xuk , y

u
k ) and the next cell HO tuple information for each

UE be {CuN , T
u
HO}. Next task is to utilize this information for

estimating UE’s future location coordinates in next time step
k + k′. Inspired by observation [12] that nodes in a network
usually move around a set of well-visited landmarks with
landmark trajectory fairly regular, we utilize past mobility logs
of UEs to estimate most probable landmarks visited by each
UE in each cell. This information is then utilized to estimate
direction of trajectory from current location while distance to
be travelled in that direction is estimated using next cell HO
time THO. Let the coordinates of most probable landmark for
UE ‘u’ in next cell CuN be lLMCu

N
= (xLMCu

N
, yLMCu

N
) then a unit

vector û originating from current coordinates in direction of
(xLMCu

N
, yLMCu

N
) is given as:
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N
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(17)

where ||.|| is Euclidian norm operator. The future coordinates
at time step k + k′ can be estimated as:

luk+k′ = luk +

√
(xLMCu

N
− xuk)2 − (yLMCu

N
− yuk )2

TuHO
k′û (18)

C. Proactive Energy Saving Optimization

The total instantaneous power consumption of a cell can be
given by the sum of circuit and the transmit power as:

P total
c = λc(P c

CT + ηc.P
c
t ) (19)

where P c
CT is the constant circuit power which is drawn if

BS in cell c is active and is significantly reduced if the BS
goes into sleep mode, P c

t is the transmit power of cell c,
ηc denotes the load and λc is indicator variable that will be
1(0) for ON(OFF) BS in cell c. One way to quantify Energy
Savings is to leverage the performance metric criterion of
Energy Consumption Ratio (ECR) that for a cell is defined
as the amount of energy consumed in Joules per each bit of
information that is reliably transmitted in that cell calculated
as:

ECRc =
P total
c∑

Uc

ωuBf(γcu)
(Joules/bit) (20)

where f(γcu) is a function that returns achievable spectral
efficiency of user ‘u’ at a given SINR γcu and ωuB is the
bandwidth assigned to user ‘u’. The SINR γcu at an estimated
user location luk+k′ at time step k + k′ when associated with



a cell c is defined as the ratio of reference signal received
power P cr,u by user ‘u’ from cell c to the sum of reference
signal received power by user ‘u’ from all cells i such that
∀i ∈ C/c, and the noise variable κ:

γcu(k + k′) =
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(21)

where P ct is the transmit power of cell c, Gu is the gain of
user equipment, Gcu is the gain of transmitter antenna of the
cell c as seen by the user ‘u’, δ is the shadowing observed
by the signal, α is the path loss constant, dcu represents the
distance of estimated user location of ‘u’ i.e., luk+k′ from cell
c, β is the pathloss exponent and ηi denotes cell load in a cell
i. This way of weighting the interference power received from
each cell with its current resource utilization yields a certain
coupling of the total interference with different cell utiliza-
tions. More loaded cells contribute more interference power
than less loaded ones. The time subscript on right hand side
of (21) and in rest of the paper indicates that all terms enclosed
within [.]k+k′ are considered for the next time step k+ k′. In
the scope of this paper, it is assumed that shadowing estimate
information for the estimated user location is available with
normally distributed error. In practical network, Channel Maps
building on the Minimization of Drive Test (MDT) reports
recently standardized by 3GPP and Channel Quality Indicator
reports collected can be utilized to estimate channel gains in
estimated locations. The total load of cell c at time step k+k′

will be the fraction of the total resources in the cell required
to achieve required rate of all users of a cell given as:

ηc(k + k′) =

[
1
Nc

∑
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τ̂u
ωB log2 (1 + γcu)

]

k+k′

(22)

where ωB is the bandwidth of one resource block, Nc is the
total number of resource blocks in cell c, τ̂u is the minimum
required rate of the user and Uc is the number of active users
connected to a cell c. It is a virtual load as it is allowed to
exceed one to give us a clear indication of how overloaded a
cell is. The required rate in the numerator is the minimum bit
rate required by the user depending upon the QoS requirements
of the services and user subscription level that can be modelled
as function of subscriber behavior, subscription level, service
request patterns, as well as the applications being used [9].
The set of users connected to cell c is determined by the user
association criterion:

Uj :=

{

∀u ∈ U |j = arg max
∀c∈C

(P cr,udBm + P cCIOdB)

}

(23)

where P cr,udBm is the true reference signal power in dBm
received by user ‘u’ from cell c and P cCIOdB is the bias
parameter (Cell Individual Offset - CIO). This CIO is primarily
used to offset lower transmit power of small cells to transfer
more load to them. In case some underutilized cells are
turned OFF, remaining cells need to have maximum utilization

to cater the transferred load from underutilized cells. It is
important to highlight here that in case of ES Optimization
with guaranteed minimum QoS requirements, it doesn’t make
sense to look at throughputs, since the UEs either get exactly
the constant bit rate or they are unsatisfied. Hence, more
appropriate performance metric to analyze is the number of
unsatisfied or dropped users "Nus" given as [13]:

Nus(k + k′) =

[
∑

c

max(0,
∑
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1.(1−
1
ηc

))

]

k+k′

(24)

Here ηc by definition from (22) is allowed to exceed 1 to give
a clear indication how overloaded a cell is. When ηc = 1,
the inner summation in (24) will be zero meaning all users in
cell c are satisfied. When ηc = 2, the inner summation will
be equal to half of the number of users of cell c meaning
half of the users are satisfied. The unsatisfied users would not
be admitted to enter the system, or they would be dropped if
they are already active. Now we formulate the general energy
consumption minimization problem for time step k + k′ as
(25-27):

min
λc,P

c
CIO

∑

C

[ECRc]k+k′ (25)

The objective is to optimize the parameters λc, P cCIO of
SCs (SC) such that energy consumption ratio in all cells is
minimized while ensuring coverage reliability and satisfaction
of user throughput requirements. The first two constraints
define ranges of the parameters while third constraint is to
ensure minimum coverage. Here P cth is the threshold for the
minimum received power for user to be considered covered,
ω̄ defines the area coverage probability (a QoS KPI) that
operator wants to maintain, and 1(.) denotes indicator function.
The fourth constraint ensures each users gets the required
minimum bit rate depending upon the QoS requirements of the
service and user’s subscription level. However, this can only
happen when the number of resources available in a cell are
sufficient to meet user requirement, therefore, this constraint is
complemented with a constraint on cell load ηc < ηT (Load
Threshold) with ηT ∈ (0, 1]. The formulated combinatorial
optimisation problem in (26-27) contains both continuous
P cCIO and binary λc decision variables. It can be identified
as a mixed integer non-linear programming problem (MINLP).
The inherent coupling of ON/OFF state vector, CIOs and cell
loads indicate it is a large scale non convex optimization
problem. As we are dealing with two problem parameters
per cell whose effects on the optimization function are not
independent, the complexity is expected to grow exponentially
with the number of cells. Hence an exhaustive search for
the optimal parameters may not be practical for large size
network due to high complexity time search that needs to
be done in real time. In order to solve the formulated ES
problem, we utilized Genetic Algorithm (GA). The reason
being it is considered attractive heuristic technique for a multi-
variable mixed integer nonlinear programming problems with
a large variable count and enormous search space. Due to its
random nature, the genetic algorithm significantly improves
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where Uj :=

{
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ηc ≤ ηT∀c ∈ C (27e)

chances of finding a global solution especially for highly non-
linear objective functions. Consequently based on estimated
network state for time step k + k′, AURORA Framework
devises optimal ON/OFF state array and CIO values for all the
SCs ahead of time such that energy consumption ratio of the
whole network is minimized. The ON/OFF state array and CIO
values remain fixed from k to k′. As in practical network, SCs
need some non-zero time in switching their state, therefore, the
proposed strategy gives ample time of k′ duration for SCs to
switch to optimal ON/OFF state.

III. PERFORMANCE ANALYSIS

In this section, we present results for our proposed AU-
RORA solution. We have benchmarked its performance against
four schemes (i): Near-Optimal Performance Bound (NARN)
wherein it is assumed that AURORA estimates future location
and channel estimate at that location with 100% accuracy, (ii):
All Cell ON with Homogeneous Network Settings (AllOn-
HomNet) wherein all cells are ON and no CIO is utilized for
small cells, (iii) All Cell On with Heterogeneous Network
Settings (AllOn-HetNet) wherein all cells are ON and fixed
CIO of 10 dB is utilized for all small cells, (iv) Reactive
scheme that is simulated by delaying user location information
i.e., Optimization with ηT = 1 is done based on location
information of past one minute.
A. Simulation Settings

We generated typical macro and small cell based network
and UE distributions leveraging LTE 3GPP standard compliant
network topology simulator in MATLAB. The simulation
parameters details are given in Table I. We used wrap around
model to simulate interference in an infinitely large network
thus avoiding boundary effects. To model realistic networks,
UEs were distributed non-uniformly in the coverage area
such that a fraction of UEs were clustered around randomly
located hotspots in each sector. Monte Carlo style simulation
evaluations were used to estimate average performance of the
proposed framework. The real challenge here was selection
of a mobility trace generation model that realistically rep-
resents behavior of actual cellular network users. Based on

TABLE I
NETWORK SCENARIO SETTINGS

System Parameters Values
Number of Macro Base Stations 7 with 3 Sectors per Base Station

Small Cells per Sector 5
Number of UEs Mobile: 84, Stationary: 336

LTE System Parameters Frequency = 2 GHz, Bandwidth = 10 MHz

Macro Cell Tx Parameters Tx Power = 46 dBm, Tilt = 1020

Small Cell Tx Parameters Tx Power = 30 dBm, CIO = 0 to 10 dB
Base Station Heights Macro BS = 25m, Small BS = 10m

Area Coverage Probability 100%
Total Simulation Duration 1 hour

an extensive analysis of pros and cons of recently published
models, we chose SLAW (Self-similar Least Action Walk)
[14]. Contrary to the conventional random walk models where
movement at each instant is completely random, chosen ran-
domly from set of allowed speed and angles, SLAW has been
shown to be a highly realistic mobility model. It exhibits
all the characteristics of real world human mobility i.e., (i)
truncated power-law flights and pause-times (ii) heteroge-
neously bounded mobility areas (iii) truncated power-law
inter- contact times and (iv) fractal waypoints. Therefore,
the accuracy of AURORA Framework tested using mobility
traces generated by SLAW is very likely to represent its true
performance in real network. The SLAW mobility model was
utilized to generate HO traces of 84 mobile users for one
week. Out of which, traces for first six days were utilized
to build and train semi-Markov mobility model for each of
the 84 UEs. Moreover, additional 336 stationary UEs (80% of
total UEs) were deployed to generate additional loading on the
network. For traffic demand, we considered two scenarios (i)
Low Traffic Demand comprising of five different uniformly
distributed UE traffic requirement profiles corresponding to
24 kbps (voice), 56 kbps (Text Browsing), 128 kbps (Image
Browsing), 512 kbps (FTP) and 1024 kbps (video) desired
throughputs, (ii) High Traffic Demand wherein all UEs are
video users. Without loss of generality and keeping operational
complexity in mind, the prediction interval k′ was set as 1
minute in our simulation study.

The semi-Markov model achieved a maximum prediction
accuracy of 87.70% having mean accuracy of 81.46%. This
high prediction accuracy is in line with our recent published
study [10] on benchmarking prediction accuracy of semi-



Fig. 1. Energy Consumption Ratio (ECR)

Markov based mobility prediction model using Real HO
measurements collected from live LTE network. A maximum
distance error between estimated and actual coordinates was
around 33 meters having mean value of around 27.5 meters.
One particular reason for high accuracy is that SLAW model
is for pedestrian users. Therefore, location of user changes
slowly as function of time and thus remains relatively more
predictable. With high speed, accuracy is expected to degrade,
but then knowledge of street/road layout can be exploited to
maintain accuracy. However, this is beyond scope of this paper
and will be subject of future study. The Energy Consumption
Ratio (ECR) of AURORA and NARN for Low and High
Traffic Demands with varying values of Load thresholds ηT
along with that of AllOn-HomNet, AllOn-HetNet and state
of the art Reactive schemes averaged over 1 hour duration
is visualized in Fig. 1. Note that for visualizing ECR ranges
for both Traffic Classes in same figure, the y-axis has been
plotted in logarithmic scale. The load threshold range is [0.6,
1] since below 0.6 there was no feasible point returned by
the P-ES optimization algorithm (27). It is observed that ECR
values are higher for high traffic demand scenario as more
number of SCs need to be switched ON to cater high load.
Moreover AURORA exhibits a linearly decreasing trend with
increasing values of ηT . It is significantly much less than the
conventional AllOn schemes for all load threshold values. The
reason being that for AllOn schemes, all cells are ON at all
times that increases energy consumption which is bound to
further escalate with densification. At lower ηT values, ECR
for AURORA is higher since smaller ηT value compels the
AURORA to keep ON larger number of underutilized SCs.
For instance at ηT = 0.6, AURORA switches ON next small
cell as soon as the utilization of current ON small cells reach
60%. Thus, on average, large number of SCs will be turned
ON for smaller ηT values thus increasing energy consumption.
Moreover, with large number of SCs turned ON, there is higher
chance that location estimation inaccuracy results in turning
ON SCs with very low or no load (i.e., very high ECR -
Joules/bit). On the other hand, larger values of ηT enables
AURORA to switch OFF large number of SCs. For instance
at ηT = 1, AURORA will switch ON next SC only when the
utilization of current ON SCs reaches 100%. As a result ECR
is expected to decrease and same trend is observed for NARN.
It is interesting to observe that on one hand with increasing
value of ηT , less number of SCs are turned ON. Therefore

Fig. 2. Percentage of Satisfied Users vs Load Threshold for High Traffic
Demand

there is less chance of any turned ON SCs with very low
or no load. On the other hand, with increasing ηT values,
AURORA switches ON smallest possible number of SCs and
all of them almost fully utilized with very few resources to
spare. As a result inaccuracy in location estimation will result
in increased risk of blocking of the UEs (hence increased
number of unsatisfied users − see Fig. 2) thereby negatively
affecting QoS. However, as the number of fully utilized SCs
is a more dominant factor in determining overall ECR as
compared to slight increase in the number of unsatisfied users,
therefore, overall ECR reduces. The comparison of AURORA
with Reactive scheme shows that ECR for Reactive scheme is
higher as compared to AURORA. This is because in Reactive
scheme, due to delayed user location information, outdated
configuration settings that are suboptimal for current instant,
are applied to the network. This increases the percentage
of unsatisfied users (on average 1.85% with AURORA at
ηT = 1 while 4% with Reactive scheme at high traffic load)
and hence higher ECR. Moreover, ECR for AllOn-HomNet is
slightly higher as compared to AllOn-HetNet. This is because
higher CIO values used in AllOn-HetNet compels SCs to be
more utilized and hence reduced ECR as compared to AllOn-
HomNet scheme.

The average percentage of satisfied users under AURORA
framework vs Load Threshold ηT for high traffic demand
scenario is visualized in Fig. 2 on left y-axis while Energy
Efficiency (1/ECR) is plotted on right y-axis. It can be
observed that at low ηT values, plenty of free resources are
available in relatively more number of ON BSs. Hence more
users are served with enough resources to meet their minimum
QoS requirements. Even with location prediction inaccuracies,
the UEs will still have better chance to get enough resources
and be satisfied. However, more SCs are turned ON at low ηT
with more chance of being underutilized and hence lower En-
ergy Efficiency. As ηT value becomes higher and approaches
1, AURORA returns such an OPC λc, P cCIO that results in
smallest possible number of switched ON SCs and all of
them almost fully utilized with very few resources to spare.
Hence a slight location estimation inaccuracy can result in
increased risk of blocking and hence decrease in number of
satisfied users. Contrary to that, fewer cells turned ON with
more utilization improve energy efficiency of the network. It
is interesting to observe that for high traffic demand scenario
even at ηT = 1, percentage of satisfied users is above 98%.



Fig. 3. Energy Reduction Gain vs Prediction Accuracy
It is logical to anticipate that the energy saving gain of

AURORA i.e., Energy Reduction Gain (ERG) performance
metric given as:

ERG = (
ECRBenchmark − ECRAURORA

ECRBenchmark
) (28)

will depend on the accuracy of the underlying mobility pre-
diction model. We analyzed this dependence by generating
four set of mobility traces with increasing randomness. As a
result, our prediction model trained on these four set of traces
exhibited average prediction accuracy of 85%, 75% , 65% and
55% respectively. The average ERG of AURORA for these
varying values of Prediction Accuracy against AllOn-HomNet
and AllOn-HetNet schemes, averaged over 1 hour duration
for high traffic demand scenario, is plotted in Fig. 3. It is
observed that as expected the gain of AURORA decreases with
decrease in prediction accuracy. However, it is noteworthy that
as long as mobility is predictable with 55% or higher accuracy,
AURORA continues to yield Energy Reduction Gain. It has
been observed, that for accuracy below 55% the AURORA′s
gain diminishes and turns into loss. Given that typical human
mobility features 93% predictability when averaged over a
large real user sample space [15], AURORA is a promising
novel proactive ES solution.

IV. CONCLUSIONS

This paper has proposed a novel spatiotemporal mobility
prediction aware proactive sleep-mode based energy saving
optimization algorithm for cracking the future 5G ultra-dense
HetNets puzzle. The proposed AURORA framework employs
innovative concept of estimating future user locations and
leverage that to estimate future cell loads. It then devises
energy saving optimization problem for the estimated future
network scenario. The majority of the conventional reactive
style approaches are expected to solve the formulated energy
saving problem dynamically in real-time as network condi-
tions change. However this is close to impossible even when
substantial computing power is available. Contrary to that, the
innovative proposed approach enables state-of-the-art heuristic
techniques like GA to find practically good solutions to the for-
mulated optimization problem predictively ahead of time. This
proactiveness make AURORA a key enabler for meeting 5G
ambitious latency and QoS requirements. Moreover, AURORA
framework also takes into account the interplay among the
three intertwined SON functions (ES, CCO and LB) due to the
overlap among their primary optimization parameters thereby
addressing a key challenge of SON conflicts that traditional

ES solutions face. Extensive simulations employing realistic
SLAW mobility model indicate that, in best case, AURORA
can achieve energy reduction gain of about 68% for high
traffic demand scenario in ultra-dense HetNets as compared
to Always On approach. Comparative performance analysis
with near-optimal performance bound indicate satisfactory
robustness of the proposed AURORA solution to location
prediction inaccuracy.
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