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Abstract—The capability for a network to self heal itself is
a promising feature for future cellular networks. An essential
function to achieve self healing is the ability to determine when a
network is operating outside of normal state, and perhaps identify
potential causes. This paper focuses on applying the supervised
machine learning approach to detect fault symptoms and identify
the cause. Our method utilizes referenced signal received power
(RSRP) reported by users over a certain period of time to detect
operational anomaly in a base station. We notice that certain
faults at a base station create noticeable change in the RSRP
readings and recognizable electromagnetic radiation pattern
around the base station. To achieve fault analysis, we develop a
framework that differentiates normal and abnormal operations
under changing environment to avoid unnecessary fault alarms.
Once abnormal operation is detected, the framework uses a
supervised machine learning system to classify the detected fault.
We develop convolutional neural network and random forest to
test the fault classification. We show that both machine learning
systems offer high accuracy.

Index Terms—Machine learning; cellular network;

[. INTRODUCTION

It is expected that by the year 2022, 1.5 billion devices will
be connected to the internet. To deal with increased demand of
mobile data from devices and users, 5G networks promise in-
creased speeds and reduced latency to deliver overall improved
mobile data services to devices and users. Sophisticated Tech-
nologies such as beamforming, massive MIMO, and densc
small cells are among some that are critical to deliver the
improved mobile data services. However, these technologies
also increase the complexity of system architecture, which in
turns complicate the maintenance of the system, especially
dealing with a large scale network with intermittent hardware
faults or ill configured network settings.

Currently whenever abnormal operations were detected or
reported, a team of individuals considered domain experts in
the field is called upon to investigate the issues and resolve
the problem. These experts are highly trained and specialized
to diagnose problems on a cellular network so that any
issue can be quickly identified and rectified to reduce the
downtime of the network. The process involves in reviewing
significant amount of KPIs which is time consuming. Besides,
it also takes an extraordinary amount of experience to learn
the minute details of a network to be able to determine
the exact cause of an error. Being able to automate the

common fault detection for cellular networks will significantly
reduce the expert involvement in maintaining the network
operation. Prior papers have attempted the untapped field of
automated fault troubleshooting. Traditionally, the automated
fault troubleshooting in cellular networks is done based on
logics in the form of rules or algorithms. The design of these
logics are mainly based on expert knowledge. While this
approach remains effective for some specific issues, it does
not scale well with increasing complexity in the system and
network. Applying machine learning to network management
including fault management has recently emerged as an at-
tractive approach to deal with well defined and perhaps also
unknown faults [1]. Machine learning techniques applicable
to fault management can be generally divided into two types.
The first type uses analytical techniques where the system
is trained using existing data and then perform analysis on
live data to detect any fault. This technique either supervised
or unsupervised learning is commonly used in detection and
diagnosis [1]. The second type employs active techniques
where the system is trained to take appropriate actions subject
to a feedback and reward system. This technique such as rein-
forcement learning have been exclusively applied to automatic
corrective actions to compensate for faults [1]. Our work falls
under the first type.

In cellular networks, various key performance indicators
(KPIs) are constantly reported by the system. When properly
analyzed, these KPIs can indicate performance issue and
hardware failure to some extent (see [1] and the references
therein). Some of the earlier works were done largely based
on statistical model, such as Barco et al. [2], [3] applied Naive
Bayesian approach to achieve automated diagnosis in cellular
networks, and Yang et al. in [4] applied big data analytics
approach to perform anomaly detection and RCA for cellular
networks. Recently, machine learning technique has been
used to deal with the fault management in cellular networks.
Gomez-Andrades et al. proposed using unsupervised learning
technique to identify anomaly and subsequently be labelled
by experts for future reference [5]. The method uses advanced
statistical model to analyze the KPIs for model tuning. While
encouraging outcomes were reported, the downside of the
method is the need for expertise in cellular networks, statistics
and machine learning domains to tune the system. In [6],
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Fig. 1: Illustration of the system model.

we focus on training a High-Order Recurrent Neural Network
to identify performance degradation based on a sequence of
Reference Signal Received Power (RSRP) reported by users
with promising outcome. These recent works have confirmed
that machine learning technique can adequately deal with fault
management in cellular networks to some extent. Unlike the
traditional rule base approach where increase in complexity of
cellular network design directly adds complexity to the rule
base design, machine learning technique is less influenced
by the underlying design of cellular networks, and hence a
more future-proof solution for fault management in cellular
networks.

In this paper, we use the RSRP reported by users to
construct a heatmap for a specific region covering a set of base
stations. Due to the noise in the RSRP readings, analyzing
directly the snapshot of a heatmap to detect potential faults
may produce excessive false positives due to noise. Our design
considers two stages where the first stage deals with detection
of a degradation event, and the second stage deals with
fault identification. This paper focuses on the second stage
where we design and train a neural network to classify some
common faults of a base stations which can be reflected on the
RSRP readings. In the next section, we describe our approach
where the system model, the dataset and the preprocessing of
the data are explained. Section III present and compare two
machine learning models for the fault classification. Results
are discussed in Section IV with important conclusion drawn
in Section V.

II. OUR APPROACH
A. System model

In our carlier work given in [6], we demonstrated using a
sequence of reported RSRP for performance degradation to
the identification of several common faults using a snapshot
of RSRP gather within a region. The approach taken in this
paper is to implement a twofold system consisting of two
stages presented in Fig. 1 where we separate the process of
identifying a performance degradation and analyzing the fault.

The first stage is a binary classifier responsible for differen-
tiating between normal and faulty conditions in the network.
Under the condition without no influence from a fault, the
classifier indicates a normal network operation. During a

normal operation, the system constantly collects the snapshots
of RSRP images of the region to produce a heatmap image.
Due to noise, fading, and hardware implementation variations
on a user equipment (UE), the produced image of heatmaps
changes from time to time. The system retains a number of last
seen heatmap images in the buffer. These images can be used
to produce an overall average heatmap image representing the
normal operation at the time of the production.

A fault in cellular networks can be detected in many ways
(see [6] for a detailed discussion). In [6], we propose using a
High-Order Recurrent Neural Network to detect performance
degradation, which will be used as a classifier in our system. In
the classifier, a trained High-Order Recurrent Neural Network
is implemented in each base station within the region to detect
performance degradation. It constantly collects a series of
RSRP readings from a set of UEs and reports whether a cer-
tain degree of performance degradation has happened. When
a performance degradation exceeds a certain threshold, the
classifier triggers a faulty condition and the system proceeds
to the second stage. While the High-Order Recurrent Neural
Network can detect a potential fault, it is not designed to
identify the cause. An additional effort is required to evaluate
the cause of the fault. This task is performed at the second
stage of the system.

As a preparation for the second stage, the system imme-
diately produces the overall average heatmap image for the
normal condition and starts collecting heatmap images for
the faulty condition. After collecting a sufficient number of
heatmap images representing the faulty condition, an overall
average heapmap image for the faulty condition is generated.
The purpose of collecting a sufficient number of heatmap
images is to reduce the impact of noise, fading and hardware
implementation variations.

The two averaged heatmap images from the buffers will
then be sent to an additional layer to process the regions of
highest deviations. The maximum deviation window will find
the areas in the heatmap where the greatest variance between
the averaged normal and faulty heatmap images exists. The
arcas swept by the maximum deviation window that have the
highest variance will be captured, and will create a new sample
that can then be sent to the fault diagnosis model. In this stage,
a machine learning model will analyse which fault the network
is experiencing and output its result. In this paper, we focus on
developing a machine learning model to identify faults in the
heatmap. The models explored for the fault diagnosis layer
include random forest and a convolutional neural network.
The result of this twofold system is increased accuracy when
examining errors in a network, and will eventually allow the
system to find the locations of faults.

B. Dataset Collection and Preprocessing

In this paper, we use ATOLL network simulator [7] to
produce the heatmap of a service area. The heatmap is gener-
ated by collecting the reference signal received power (RSRP)
at various locations. Pixel values for the heat map correlate
directly with power intensities experienced at locations on



the service area. Images in this paper have been converted
to grayscale for two reasons. Firstly, color in the heatmap
has little significance as the colors are mapped from a one-
dimensional power intensity level. Secondly, grayscale images
reduce computational complexity. Each grayscale heatmap
image is converted to a flatten one-dimensional representation
that corresponds with location on the map before being fed
into a machine learning model. Fig. 2 illustrate an example
of the grayscale heatmap produced by ATOLL simulation.
The service area under consideration is the city of Brussels
covering over 800 km?. The area consists of 97 sectorized
basc stations, cach basc station has three transmitters. In our
experiments, we focus on altering the operation of 40 base
stations or 120 transmitters, while keeping other base stations
functioning as normal.

Each heatmap image represents a snapshot of the RSRP
readings collected in the service area. These RSRP readings
fluctuate over the time due to random noise, fading and
different hardware architectures. RSRP readings fluctuation
may cause a machine learning system to overfit on the train-
ing set. To reduce the impact of RSRP rcadings fluctuation
influencing the performance of a machine learning system, a
set of heatmap images collected over a period of time is used
to produce an overall average heatmap image.

Table I shows the settings in simulation for the dataset
collections. The following describes the faults considered in
our experiments.

1) Site Outage: Each of the three transmitters on a base
station are turned off.

2) Transmission Power: A power error is introduced to a
transmitter varying the default value of 43 dBm to 25
dBm, 29 dBm, and 35 dBm.

3) Antenna Uptilt (AU): The tilt angle of the transmitter
was increased from O degrees to positive 25 degrees.

4) Antenna Downtilt (AD): The tilt angle of the transmitter
was decreased from O degrees to negative 25 degrees.

Upon detection of a fault, the system enters the second stage
to perform fault classification. Instead of presenting the entire
heatmap image to the machine learning model which consists
of nearly 100 base stations, a comparison between a normal
and a faulty image is performed. In this paper, we produce the
difference between the normal heatmap image averaged over
a period of time and the faulty heatmap image averaged over

RSRP (dBm) >=-70
RSRP (dBm) >=-75
RSRP (dBm) >=-80
RSRP (dBm) >=-85
RSRP (dBm) >=-90
RSRP (dBm) >=-95
RSRP (dBm) >=-100
RSRP (dBm) >=-105

the same duration. The comparison allows removal of many
regions where base stations operate normally. We design a
maximum deviation window sweeping to identify the region
that is likely to produce the fault. This information is further
checked against the binary classifier reporting to confirm that
the identified region indeed covers the potential faulty base
station reported by the binary classifier. Any potential false
alarm is removed from this stage.

The resulting image from the maximum deviation window
is a 32 by 32 grayscale image showing the image difference
between the average normal and average fault images. Fig. 3
shows an instance of site outage after captured by maximum
deviation window.

III. MACHINE LEARNING SYSTEM SETUP

In this paper, we use Convolutional Neural Network (CNN)
and Random Forest to perform classification of detected faults.
As mentioned earlier, we train the machine learning system to
classify four faults.

A. Comnvolutional Neural Network

CNN is a powerful machine learning system where layers
of multiple nodes, called perceptrons, are connected to each
perceptron in the next layer. Each connection between per-
ceptrons has a corresponding weight which is multiplied by
the output of a node before going into the next node. Before
being multiplied by weights, outputs of perceptrons are sent
through an activation function. The activation function adds
non-linearities for the model to understand complex nonlinear
data. The input of each perceptron is the sum of all perceptron
outputs from the previous layer which has been multiplied
by its corresponding weights and sent through their activation
function. During training the model uses a technique called

TABLE I: Simulation settings.

System Parameters Values
Cellular Layout 120 Macrocell sites
Sectors 3 sectors per BS
Simulation Area 800 km?
Path Loss Model Ray-Tracing
BS Transmit Power 43 dBm
Cell Individual Offset 0 dBm
Antenna Tilt 0 deg
Antenna Gain 18.3 dBi
Carrier Frequency 2100 MHz

Fig. 3: Illustration of site outage deviation captured by the
maximum deviation window.
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Fig. 4: Model scores of CNN and Random Forest for four
different faults.

backpropagation where the model learns to minimize errors
by adjusting the weights of each connection and bias to each
perceptron.

In this paper, a simple four layer network is designed. The
input layer is the size of the images used, in this case, 32x32
or 1024. The subsequent number of perceptrons in each layer
are 512, 128, 64, 32, and 4. The numbers are selected to
remain in the performance region of the computer and arc
large enough to reduce the risk of bottlenecking the CNN.
Other configurations are also tested with little to no additional
improvement. The activation function chosen is LeakyReLu
to preserve any negative input information into other layers,
which give a slight improvement in the accuracy over the
standard ReLU.

B. Random Forest

The other classifier used in this paper is a Random Forest. A
random forest is an aggregate of decision trees where decision
trees take in features and perform splits based off what is
known as the CART algorithm in order to minimalize the Gini
Impurity. Each split will occur until the decision tree produces
the lowest error and separate classes in the purist manner. This
is done very efficiently to the point until decision trees begin
to overfit to the training set and reduce reliability of the model.

To counteract the overfitting characteristic of decision trees
a random forest employes what is called an ensemble, where
multiple trees are trained individually. In a process called
bootstrapping, the trees will each receive a different subset
of the dataset to be trained. This ensures each decision tree
is unique and learning something different about the feature
in the data. An additional measure to reduce the risk of
overfitting is to prevent one tree from making a decision on the
classification. Instead each tree casts a vote, and determining
factor for which class is selected depends on the highest vote.

I'V. RESULT DISCUSSIONS

In our experiment, we configure ATOLL simulator to pro-
duce normal RSSI heatmap images under normal condition
and the conditions containing either one of the four considered
faults. These images are then used to train and test the accuracy
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Fig. 5: Fault classification accuracy of CNN and Random
Forest for four different faults.

Fig. 6: RF feature importance heatmap.

of our developed machine learning system. The RSRP readings
includes Gaussian noise which has astandard deviation set to
5dBm. We first compare the machine learning model scores in
Fig. 4. It is shown that the random forest model outperforms
CNN in almost each of the categories of measurement. Not
only does the random forest have a higher accuracy when
making predictions of the faults in the network but it is also
shown that random forest has higher recall, precision, and
F1 scores than CNN. A comparison of accuracy for different
faults are given in Fig. 5.

Random forest offers better performance than DNN because
the random forest can potentially filter out the noise better than
CNN. As has been explained earlier in this paper, random
forest takes in a set of features and makes splits based off the
features in the dataset. Splits performed are based off creating
if/than rules while the CNN is looking for optimum weights
to reduce error of a pixel.

In the case of images each of the pixels correspond to a
pixel sent in the sample. Naturally this means the total feature
size is the number of pixels in a given window. Random
Forest has an ability to determine which features are the most
important when making decisions where to split and categorize
classes. The number of times a feature is used by decision
trees in a Random forest the more important the feature.
Fig. 6 is a reconstructed heatmap of each of the features the
random forest sees as important when making decisions. The
brighter the pixel in the window indicates that the random
forest relies more on those pixels to make splits and build its
trees. Although the image appears noisy, it is easy to see key
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Fig. 7: Fault classification accuracy of CNN and Random
Forest for four different faults (RSRP readings with Gaussian
noise standard deviation = 10dBm).

areas the random forest uses to create its higher accuracy.

In Fig. 7, we increase the standard deviation of Gaussian
noise on RSRP readings from 5dBm to 10dBm. We can im-
mediately see the high impact of noise on CNN performance.
The accuracy of CNN drops significantly particularly for the
case of transmission power fault. As CNN is attempting to
generalize over the whole image rather than secking to find
arcas of interest, CNN find slight difficulty to cope with noise
and hence its accuracy is not as good as random forest.

V. CONCLUSIONS AND FUTURE WORK

Self healing will be a necessary component to reduce cost
and time to solve the problem of unacceptable drops in
service in a network. In this paper, we presented an auto-
mated solution to diagnosing faulty conditions leveraging the
capabilities of machine learning. The twofold model approach
brings promising accuracy and has future implications for
identifying exact locations of network quality drop. Utilizing
RSRP heatmap images, operators can consistently grab power
levels transmitted and received by users in a service area to
produce these maps, and when drops in service are detected,
the operators are able to determine exact areas automatically.

As directly using instantaneous RSRP readings trigger high
false alarm in fault detection and diagnosis, our proposed sys-
tem is based on a twofold model which firstly detect potential
performance issue and collect sufficient RSRP readings over
a period to reduce the impact of noise, and secondly uses
machine learning models to classify the fault for automatic
fault diagnosis.

To build the system, we reused our earlier work on perfor-
mance degradation detection for the purpose of fault detection.
Once an event of performance degradation was detected,
fault diagnosis process was triggered. We tested two machine
learning models for the fault classification, including convolu-
tional neural network and random forest. Our test showed that
random forest was able to cope with noise presence in RSRP
readings compared with CNN. When presenting noisy images,
CNN struggled to identify area of interest and thus failed to
accurately classify faults. In the future, we shall continue to

enrich the types of faults that a machine learning system can
classify.
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