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Abstract—In the wake of network densification and multi-
band operation in emerging cellular networks, mobility and
handover management is becoming a major bottleneck. The
problem is further aggravated by the fact that holistic mobility
management solutions for different types of handovers, namely
inter-frequency and intra-frequency handovers, remain scarce.
This paper presents a first mobility management solution that
concurrently optimizes inter-frequency related A5 parameters
and intra-frequency related A3 parameters. We analyze and
optimize five parameters namely A5-time to trigger (TTT),
A5-threshold1, A5-threshold2, A3-TTT, and A3-offset to jointly
maximize three critical key performance indicators (KPIs): edge
user reference signal received power (RSRP), handover success
rate (HOSR) and load between frequency bands. In the absence
of tractable analytical models due to system level complexity, we
leverage machine learning to quantify the KPIs as a function
of the mobility parameters. An XGBoost based model has the
best performance for edge RSRP and HOSR while random
forest outperforms others for load prediction. An analysis of the
mobility parameters provides several insights: 1) there exists a
strong coupling between A3 and A5 parameters; 2) an optimal
set of parameters exists for each KPI; and 3) the optimal
parameters vary for different KPIs. We also perform a SHAP
based sensitivity to help resolve the parametric conflict between
the KPIs. Finally, we formulate a maximization problem, show
it is non-convex, and solve it utilizing simulated annealing (SA).
Results indicate that ML-based SA-aided solution is more than
14x faster than the brute force approach with a slight loss in
optimality.

Index Terms—Handover optimization, Mobility Management,
5G, 6G, Machine Learning

I. INTRODUCTION

The ever-increasing user demands for high data rates, large
number and variety of connected devices, and the low latency-
dependent use cases are some of the major drivers for the
evolution of cellular networks. To meet these requirements,
one of the most formidable approaches for the emerging
networks is a shift towards denser and heterogeneous de-
ployment containing different types of base stations (BS)
operating at motley of frequency bands [1]. For instance, 4G
only exploits sub-6GHz frequency bands but the most recent
5G-New Radio (NR) also operates on mmWave spectrum
alongside the sub-6GHz range. This range of frequency band
is expected to further broaden in the upcoming 6G networks
with the utilization of the THz band. However, the migration
towards dense heterogeneous networks unravels unprecedented
challenges specifically on energy efficiency [2] and mobility

management. The mobility related challenges arise from the
inevitable explosion in handover (HO) occurrences and the
upsurge in signaling overhead.

Mobility management in cellular networks plays a pivotal
role in ensuring an optimal quality of service for users. This
is due to the direct impact of HO settings on KPIs such as
HO success rate (HOSR), retainability, cell utilization, and
throughput to name a few. This relationship between HO
settings and KPIs are presented in a comprehensive survey
on the mobility management in 5G and emerging networks
[3]. To optimize HO, the current industrial practice relies
on vendor defined gold standards (GS) and on the human
experience-based tuning of HO related configuration and op-
timization parameters (COPs). GS is based on a one-model-
fits-all evaluation, which is not sufficient to cover the vast
and distributed nature of the emerging networks. In addition,
the human intervention in the manual tuning of COPs is
not suitable for rapidly changing network conditions, not to
mention its vulnerability to human errors. To reduce human de-
pendency, self organizing networks (SON) induce some level
of automation in the optimization process. One specific SON
module known as mobility robustness optimization (MRO)
optimizes a limited number of HO-related COPs based on past
HO records. However, this approach relies on semi-automated
hit-and-trial in most cases, which makes it reactive in nature.
To meet the needs of 5G and future 6G networks, the pressing
need to depart from a semi-automated approach towards a fully
automated HO management has never been evident.

A proactive and fully automated HO management starts with
an efficient HO optimization framework designed to quantify
the relationship between HO-related COPs and affected KPIs.
However, despite the recent efforts to analytically model the
COP-KPI relationship [4], [5], tractable models for several
COP-KPI associated with HO are not possible due to diverse
user mobility and varying network dynamics. To overcome
this challenge, data driven models are an effective alternative.
These models are capable of orchestrating functions, which
can map out KPI vis-a-vis HO-related COPs. However, these
models are extremely sensitive to data sparsity and poor data
representation. In cellular networks, gathering rich and rep-
resentative data for training data driven models is considered
as a bottleneck due to privacy concerns and possible network
impairment while carrying out trials on a wide range of COP
combinations in a live network. In this backdrop, utilizing
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other methods for data generation, such as simulators, can be
beneficial.

A. Related Work

The importance of mobility management is manifested by
the unwinding interest of both the research community and
industry players in optimizing HO. Recent work in mobility
management involves HO-related parameter optimization [6]–
[11] and proposing new methods for performing HO [12].

Authors in [6] categorized users in signal strength-based
clusters and tuned time to trigger (TTT) and offset of event
A3. The goal of the study was to improve spectral efficiency
and data rates of edge users. On the other hand, a fuzzy logic-
based scheme utilizing user velocity to adapt the HO margin
(HOM) of event A3 was proposed in [7]. The proposed scheme
aimed to reduce the HO failure ratio, the number of HO,
and ping-pongs. Authors in [8] proposed a channel individual
offset (CIO) tuning algorithm for event A3. The algorithm
tuned CIO for each cell-pair and commercial LTE testing of
algorithm reduced radio link failures (RLF). To reduce RLF,
authors in [9] used three COPs (TTT, offset of A3 and CIO)
and developed a distributed algorithm. While [6]–[9] delved in
improving HO of cells operating on a single frequency band
called intra-frequency HO, authors in [10], [11] attempted to
optimize HO between cells with different frequency bands
called inter-frequency HO. They used threshold1, threshold2,
and TTT of event A5 to optimize reference signal received
power (RSRP) and HOSR. Moreover, they exploited genetic
algorithm for optimization and showed a faster convergence
compared to the brute force method. Meanwhile, a new HO
scheme utilizing the signal strength, available bandwidth,
and the sojourn time was presented in [12]. A social long
short-term memory (LSTM) was used for the sojourn time
prediction. The proposed HO scheme reduced the number of
HO and ping-pongs.

The aforementioned works on HO management either op-
timize intra-frequency HO using event A3 parameters or
inter-frequency HO using event A5 parameters. However, the
current approach of partial optimization of intra and inter-
frequency HO parameters is not optimal because there exists
a strong interdependence between event A3 and event A5
parameters. Motivated by these shortcomings, we present a
holistic mobility management framework, which simultane-
ously optimizes A3 and A5 parameters to improve multiple
KPIs. On top of the HOSR, this multi-objective optimization
framework jointly optimizes two other KPIs namely edge user
RSRP and load distribution among different frequency bands.

B. Contributions

The main contributions of the work are listed below:
1) This paper presents a holistic inter and intra-frequency

HO parameter optimization framework utilizing five
mobility COPs namely, A5 TTT, A5 threshold1, A5
threshold2, A3 TTT, and A3 offset. We show that opti-
mizing inter-frequency and intra-frequency in silos is not
optimal as there exists a strong coupling between them
for several KPIs. To the best of the authors’ knowledge,

there does not exist any framework for simultaneous
optimization of both inter and intra-frequency HO.

2) We formulate and solve a multi-objective optimization
problem to achieve the optimal values of the 5 COPs that
jointly maximize edge user RSRP and HOSR while bal-
ancing the load distribution between different frequency
bands. In the absence of tractable analytical models due
to system level complexity, we utilize data driven mod-
eling to quantitatively mine the COP-KPI relationship.
Evaluations of several state-of-the-art models reveal that
XGBoost outperforms other methods in predicting edge
user RSRP and HOSR while random forest has the best
performance for load balancing.

3) To resolve the objective conflict between different KPIs,
we leverage shapley additive explanation (SHAP) anal-
ysis. The insights drawn from the SHAP analysis are
valuable especially for network operators to understand
and deal with the discord that usually arises with multi-
objective KPI optimization.

4) Finally, we establish the non-convexity of the optimiza-
tion problem and leverage simulated annealing to solve
the problem. Results show that the SA-aided data driven
optimization converges around 14 times faster compared
to the brute force approach. The faster convergence is
particularly useful for rapidly changing network condi-
tions and dynamics.

The rest of the paper is organized as follows: we present
a system model including event A3 and A5, problem formu-
lation, and data generation in Section II. Section III presents
the behavior of KPIs with varying COPs. Meanwhile, Section
IV describes the performance of ML algorithms and SHAP
sensitivity analysis. The objective function optimization is
discussed in Section V and Section VI concludes the paper.

II. SYSTEM MODEL

In this section, we describe 3GPP-based HO events A3
and A5 as well as the optimization KPIs such as edge users
RSRP, HOSR, and load balancing. We then formulate the
optimization problem followed by the data generation process.

A. Event A3-based Intra-frequency Handover

Event A3-based intra-frequency HO is triggered when the
RSRP of a user u from target gNB becomes higher than the
RSRP of the user from the serving gNB by an offset. Note that
here, both the source and target gNB operate using a similar
frequency band. If the following condition is maintained for
a certain time called time to trigger, A3TTT , A3-based HO is
triggered:

M t
u +Os,t −A3hyst > Ms

u +A3off (1)

where M t
u and Ms

u is the RSRP from target t and serving
gNB s to the user u, respectively, Os,t is cell specific offset
from serving gNB to target gNB also known as CIO, while
A3hyst and A3off are the hysteresis and offset of event A3,
respectively.



ACCEPTED IN IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC) 2022 3

B. Event A5-based Inter-frequency Handover

Event A5-based inter-frequency HO is triggered when the
RSRP of a user from serving gNB decreases below a threshold,
i.e., threshold1, and the RSRP of the same user from a
target gNB increases above another threshold, i.e., threshold2.
Unlike event A3-based HO, the source and target gNB in this
case operates on different frequency bands. HO using A5 is
triggered when the following conditions remain satisfied for a
A5TTT .

Ms
u +A5hyst < A5th1

M t
u +Os,t −A5hyst > A5th2

(2)

where A5hyst, A5th1 and A5th2 are the hysteresis, threshold1
and threshold2 for event A5, respectively.

C. Problem Formulation

We begin the problem formulation with the presentation of
path loss model. In this paper, we model the path loss between
the users and gNB as a close-in (CI) dual slope path loss model
[13]. The dual slope path loss equation for the CI model is
expressed as follows:

PLCI
Dual(d

s
u) =


−FSPL(1m)− 10n1log10(d

s
u) for dsu ≤ dth

−FSPL(1m)− 10n1log10(d
s
u)

−10n2log10(d
s
u/dth) for dsu > dth

(3)
where PL is the path loss in dB, dsu is the 3D distance between
the serving gNB s and user u, FSPL is free space path loss
in dB, dth is the threshold distance also known as breakpoint
distance, n1 and n2 is the path loss exponent for distances less
than dth and greater than dth, respectively.

RSRP of the user is an important performance metric
because it gives an estimate of the link strength between the
user and the serving gNB. The downlink RSRP Ms

u form the
serving gNB s to user u is given by:

Ms
u = P s

t GuG
s
uδ

s
uP̃L

CI

Dual(d
s
u) (4)

where P s
t is the transmit power of serving gNB s, Gu is the

receiver antenna gain of user equipment, Gs
u is the transmitter

antenna gain of the serving gNB s towards user u, δsu is the
shadowing observed from gNB s at the location of user u,
P̃L

CI

Dual(d
s
u) is the linear dual slope path loss model derived

from eq. (3). δsu is the shadowing modeled as a gaussian
random variable over space.

Since HO inherently impacts cell edge users more than the
users in the cell center, it is rational to impart more importance
to cell edge users. This motivates us to select edge user RSRP
as the first KPI for optimization. The mean RSRP M of the
cell edge users in the network can be described as:

M =

∑
∀i∈U

M i
s

|U|
(5)

where U is a set of 25%-tile RSRP users in the network.
The 25%-tile RSRP provides preference to users with a high
chance of HO, i.e., at the cell edge.

Another relevant KPI which is directly affected by HO
parameters is the HOSR. The poor setting of HO parameters

can lead to low HOSR, which can become a key bottleneck
for especially for ultra-reliable low-latency communication
(URLLC) use cases. Regardless of the HO type, be it inter-
or intra-frequency, HOSR H can be described as:

H =
HOS

HOS +HOF
× 100% (6)

where HOS and HOF are the numbers of successful and
failed HO, respectively.

Finally, HO parameter setting, inter-frequency HO in par-
ticular, can impact the load distribution among different fre-
quency bands. Thus, we incorporate load balancing among
different frequency bands as another KPI for efficient resource
utilization in the cellular network. Furthermore, balanced data
traffic not only provides fairness among users operating at
different frequency bands but also minimizes interference. The
load Lf at a frequency band f , defined as the average PRB
utilization per gNB, can be expressed as:

Lf =

∑
∀i∈Bf

Na
i

Ni

|Bf |
(7)

where Na
i is the number of allocated PRBs at gNB i, Ni is the

number of all PRBs at gNB i and Bf is a set containing all
the gNB of frequency band f . The goal of load balancing is to
keep a similar PRB utilization across all the frequency bands.
We formulate the load balancing among different frequency
bands as:

L =

(∏
∀i∈F

1− Li

) 1
|F|

× 100% (8)

where F is a set containing all the frequency bands in the
network while we refer L as the load factor for this paper.

We then formulate a multi-objective optimization problem
to jointly maximize M , H , and L employing event A5 related
COPs such as A5th1, A5th2, and A5TTT as well as event A3
related COPs namely A3off and A3TTT . The optimization
function is given in (9). M̃ , H̃ and L̃ are the normalized
values of M , H and L, respectively. The normalization ensures
that the respective weight defines the importance of each KPI
by removing the bias towards KPIs with larger values. The
operator-defined weight for M , H , and L are expressed by
α, β, and (1 − α − β), respectively that can be used to
adjust their relative importance. To achieve optimal results,
the objective function is bounded by several constraints. The
first four constraints in (9) limit the values of the optimization
variables i.e., COPs in the 3GPP defined ranges. T1, T2, O
are the ranges of A5th1, A5th2 and A3off , respectively, with
the subscript showing the minimum and maximum values and
T is a set containing all the values of A5TTT and A3TTT .
Meanwhile, the fifth constraint states that the sum of the three
weights should be equal to one, and finally, the last constraint
ensures that for each frequency band i, the load Li is less than
the operator defined load threshold Li

th.

D. Simulation Setup and Data Generation

The data collection from a live network is a tedious task and
even impractical in most cases. The reason is the reluctance
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max
A3TTT ,A3off ,A5TTT ,A5th1,A5th2

αM̃ + βH̃ + (1− α− β)L̃;

subject to T1min ≤ A5th1 ≤ T1max

T2min ≤ A5th2 ≤ T2max

Omin ≤ A3off ≤ Omax

A5TTT , A3TTT ∈ T
α+ β ≤ 1
Li ≤ Li

th ∀i ∈ F

(9)

TABLE I
DESCRIPTION OF SIMULATION PARAMETERS

Parameter Description Value
Simulation area 4km2

Number of 1.7GHz macro cells 6
Number of 2.1GHz macro cells 6
Number of 3.5GHz small cells 12
Macro and small cell height 30m and 20m
Macro and cell transmit power 35dBm and 20dBm
Total bandwidth for 1.7, 2.1 and 3.5 GHz 10, 15 and 20 MHz
Total PRBs for 1.7, 2.1 and 3.5 GHz 52, 78, 106
Pathloss exponent 1 and 2 [13] 2.9 and 3.9
Shadowing standard deviation [13] 6.9
Active user density λu 15 per km2

Speed vector V [3, 60, 120, 240] km/h
Transmission time interval (TTI) 1 ms

of most operators to test a wide range of COP combinations
due to possible network impairment in a live network in
addition to the privacy and business protection concerns. For
this reason, data gathered from live networks tend to be sparse
and under represented. To address the challenges of sparsity
and non-representative data, we leverage a state-of-the-art
3GPP simulator named SyntheticNet [14]. To ensure data
authenticity, SyntheticNET is calibrated against real network
measurements.

Leveraging SyntheticNet, we deploy a three-tier heteroge-
neous network in an area of size 2km×2km. The first two
layers are composed of tri-sector macro cells operating at
1.7GHz and 2.1GHz frequency bands. On contrary, the third
layer consists of omni-directional small cells with 3.5GHz
operating frequency. The initial user deployment follows a
uniform random distribution with an active user density of
λu. The user mobility is modeled as random way point while
the speed of each user vu is chosen from a set V and vu
remains constant. Each entry of V is equally probable. Table
I summarizes the simulation parameters.

The ranges of event A5 and event A3 parameters used to
generate the data are shown in Table II. We use a wide range
of A5th1, A5th2, and A3off to cover the impact of hysteresis
and make the optimization more robust. To limit the search
space size, we use a step size of 2dB for A5th1, A5th2 and
A3off . A prerequisite step for inter-frequency HO known as
measurement gap is implemented using event A2 (i.e., serving
RSRP becomes lower than a threshold) with TTT, threshold,
and hysteresis set to 64ms, -90dBm, and 1dB, respectively.

III. IMPACT OF HANDOVER PARAMETERS ON KPIS

This section presents the impact of varying event A3 and
event A5 parameters on the behavior of the selected KPIs.

TABLE II
DESCRIPTION OF COPS TO GENERATE THE KPIS

COPs Values
A5TTT [64, 128, 192, 256, 384, 512, 640] ms
A5th1 [-96 to -116] dBm
A5th2 [-96 to -116] dBm
A3TTT [64, 128, 192, 256, 384, 512, 640] ms
A3off [0 to 10] dB

The insights from this analysis set the motivation to develop a
holistic and concurrent optimization of A3 and A5 parameters.
Similarly, the analysis provides valuable insights to network
operators for effective tuning of the HO parameters.

Fig. 1 shows the behavior of HOSR with varying event
A3 and event A5 parameters. Analysing event A3 and A5
independently, the first notable observation comes from the
apparent increasing trend of HOSR as the values of A3TTT

and A3offset become larger regardless of the event A5 param-
eter setting. A larger value of A3 parameters inherently limits
the number of intra-frequency HOs which in turn results to
lower chances of HO failures. On the other hand, the trend
with varying A5 parameters is not as prominent.

Concurrent analysis of event A3 and event A5 reveals
that smaller values of A3 parameters combined with larger
values of A5th1 and smaller values of A5TTT and A5th2
provide the optimal HOSR. However, the optimal point shifts
to middle values of A5TTT , A5th1 and A5th2 with further
increments in the values of A3 parameters. This shift in
values of the optimal A5 parameters with variations in A3
parameters signifies an inter-connection between A3 and A5
parameters and optimizing them separately will result in sub-
optimal HOSR. This interdependence is further manifested by
analysing the impact of varying A3 and A5 parameters on
load factor as shown in Fig. 2. Results reveal that, similar
to HOSR, the optimal A5 parameters shift with varying the
values of A3 parameters. The results confirm and solidify the
need for simultaneous optimization of A3 and A5 parameters.

Finally, Fig. 1 and Fig. 2 reveal the conflict in optimizing
HOSR and load factor. This disparity is highlighted by the
difference in the set of A3 and A5 parameters where HOSR
and load factor are maximum. Additionally, the results expose
the trade-off in optimizing these KPIs. Hence, to balance the
trade-off, a multi-objective joint optimization of these KPIs is
necessary as proposed in this paper.

IV. DATA-DRIVEN MODELS FOR MINING COP-KPI
RELATIONSHIP

In this section, we present the performance evaluation of
several data-driven models used in mining the relationship
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Fig. 1. Impact of A3 and A5 parameters on HOSR. The blue markers highlight
the optimal A5 parameters for given A3 parameters.

Fig. 2. Impact of A3 and A5 parameters on load factor. The blue markers
highlight the optimal A5 parameters for given A3 parameters.

between the HO-related COPs and KPIs. Specifically, we
leverage six machine learning regression algorithms including
linear, polynomial, support vector, decision tree, random for-
est, and XGBoost. For each KPI, we measure and evaluate the
performance of the models in terms of root mean square error
(RMSE) using an 80%-20% train-test split. Fig. 3 shows the
RMSE of the six algorithms for mean edge user RSRP, load
factor, and HOSR. Results reveal that linear regression per-
forms the worst indicating a complex COP-KPI relationship.
Furthermore, tree based algorithms generally perform better
with decision tree, random forest, and XGBoost outperforming
other regression algorithms. XGBoost has the best RMSE
of 0.1453dBm and 3.33% for mean edge RSRP and HOSR,
respectively. However, the random forest has the best RMSE
of 0.14% for load factor with XGBoost as a close runner-up.

We utilize the SHAP sensitivity analysis [15] in a bid to
get insights into the machine learning models. Fig. 4 shows
the average impact of all the five COPs on mean edge user
RSRP, load factor, and HOSR. Results show that A5TTT and
A5th2 have the highest impact on mean edge RSRP while
A3TTT and A3off have minimal impact. On the other hand,
A5TTT and A5th1 influence load factor the most followed
by A5th2. Furthermore, the load factor is least impacted
by A3TTT and A3off . In contrast to the edge user RSRP
and load factor, A3TTT has the highest mean SHAP values
for HOSR while A3off has the least impact. This SHAP
analysis reveals that the relative impact of each COP on the
three KPIs is different. For instance, A3TTT has a very high
impact on HOSR compared to mean edge RSRP and load
factor. Hence, A3TTT can be tuned for optimizing HOSR
without significant degradation in other KPIs. These SHAP-

Fig. 3. Comparison of machine learning algorithms in predicting Edge RSRP,
Load Factor and HOSR

Fig. 4. SHAP sensitivity analysis

based valuable insights can be leveraged for multi-objective
parameter tuning by network operators and can be leveraged
to avoid existing SON conflicts.

V. OBJECTIVE FUNCTION OPTIMIZATION

The objective function defined in eq. (9) with A5TTT = 64,
A3TTT = 64, A3off = 0, α = 0.33 and β = 0.33 is
shown in Fig. 5. The presence of multiple maxima in the plot
reveals the non-convex nature of the optimization problem. To
solve this types of optimization problems, usual approaches
include brute force or heuristic optimization solutions. In this
paper, we compare the performance of the brute force and SA
in solving eq. 9. Although SA does not always converge to
the best solution, its convergence time is significantly lesser
than brute force. Table III shows that simulated annealing
converges more than 14 times faster than brute force. The
quick convergence of simulated annealing makes the solution
agile, which is particularly important for rapidly changing
network conditions.

A comparison of the best objective function obtained by
SA+XGBoost and brute force is shown in Table III. We
analyse the resulting objective function for different values
of α and β to test the robustness of the proposed solution
with varying importance of KPIs in the objective function.
We implement a monte-carlo simulation for 1000 iterations for
SA. Results show a small difference in the objective function
obtained using SA+XGBoost and brute force for different KPI
importance. This small difference in the objective function
is due to the prediction error in the ML algorithms and
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Fig. 5. Objective function defined in eq. (9) with A5TTT = 64, A3TTT =
64, A3off = 0, α = 0.33 and β = 0.33

TABLE III
COMPARISON BETWEEN SIMULATED ANNEALING AND BRUTE FORCE

APPROACH

α β SA+XGBoost Brute
Force

Objective
Function

0.33 0.33 0.8684 0.8878
0.8 0.1 0.9380 0.9610
0.1 0.8 0.9096 0.9375
0.1 0.1 0.9011 0.9414

Number of Iterations 2500 35574

slight non-optimal convergence of SA. Moreover, these results
indicate that the proposed ML-aided SA solution can enable
agile self optimization of mobility parameters.

VI. CONCLUSION

Network densification and multi-band network deployment
pose new challenges to HO management. In this paper, we
present a solution that concurrently optimizes inter-frequency
and intra-frequency HO parameters to jointly maximize mean
edge user RSRP, load factor, and HOSR. We leverage machine
learning to quantify the COP-KPI relationship as tractable
analytical solutions are not possible due to the system level
complexity. The evaluation shows that XGBoost performs the
best in capturing the behavior of HOSR and mean edge user
RSRP with varying HO parameters while random forest has
the best performance for load factor. SHAP sensitivity analysis
reveals that event A5-related parameters are the most important
COPs for mean edge user RSRP and load factor. On the other
hand, the event A3-related parameter specifically TTT has
the highest importance for HOSR. After showing the non-
convex behavior of the objective function, we evaluate the
performance of the brute force and simulated annealing using
different KPI priority weights. Results show that the ML-based
SA aided solution is more than 14 times faster compared to
brute force at the cost of slight sub-optimal objective function.
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