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Abstract—Fault diagnosis is turning out to be an intense
challenge due to the increasing complexity of the emerging
cellular networks. The root-cause analysis of coverage-related
network anomalies is traditionally carried out by human experts.
However, due to the vast complexity and the increasing cell
density of the emerging cellular networks, it is neither practical
nor financially viable. To address this, many studies are proposing
artificial intelligence (AI)-based solutions using minimization of
drive test (MDT) reports. Nowadays, the focus of existing studies
is either on diagnosing faults in a single base station (BS) only
or diagnosing a single fault in multiple BS scenarios. Moreover,
they do not take into account training data sparsity (varying
user equipment (UE) densities). Inspired by the emergence of
convolutional neural networks (CNN), in this paper, we propose
a framework combining CNN and image inpainting techniques
for root-cause analysis of multiple faults in multiple base stations
in the network that is robust to the sparse MDT reports, BS
locations and types of faults. The results demonstrate that the
proposed solution outperforms several other machine learning
models on highly sparse UE density training data, which makes
it a robust and scalable solution for self-healing in a real cellular
network.

Index Terms—Root cause analysis, multi-fault diagnosis, cel-
lular data sparsity, minimization of drive tests, convolutional
neural networks, radio environment map inpainting, network
automation, self-healing

I. INTRODUCTION

The growing complexity of network architecture, increase
in network traffic, and increase in network parameters in the
emerging cellular networks are making management tasks
increasingly complex [1]. Out of several management chal-
lenges in the emerging cellular networks, one challenge is the
detection and diagnosis of faults. Faults in cellular networks,
which can lead to soft outages (partial service degradation)
or hard outages (complete coverage degradation), can occur
due to several reasons. One reason is poor network planning,
which results in the improper configuration of parameters, such
as optimal number, types, and location of base stations, the
antenna height, the number of sectors, the sector orientation,
tilt, power, frequency reuse pattern, or the number of carriers,
among others. Other types of faults can occur due to hardware,
software, or functionality failures (e.g., power supply or radio
board and network connectivity failures) [2].

Traditionally, outages are detected by either using alarms,
performance counters, or by complaints filed by network

subscribers [2]. This can take hours and at times days to
resolve outage issues. Therefore, for better Quality of Ex-
perience (QoE) and Quality of Service (QoS), the network
providers must spend a lot of money, time, and energy to
do coverage testing via drive tests. This challenge of fault
detection and root cause analysis is especially aggravated in
ultra-dense network vision of emerging networks, where the
same advances in network design that bring advantages such
as higher data rates and capacity as compared to the legacy
networks, i.e., densification, also leads to growing complexity
of the network, making it difficult to manually detect and
diagnose faults. The additional burden of growing operational
and capital expenditures is making matters worse.

To address these challenges, network automation solutions,
i.e., self-healing solutions are needed that can automate the
process of fault detection and diagnosis. Only when the
outages and their root cause are detected in a timely manner,
will the network be able to take actions to compensate for
these outages autonomously.

A. Related Work

Root cause analysis of network coverage outages has two
components; namely, anomaly detection, and diagnosis. Al-
though outage detection has been studied extensively in the lit-
erature, such as in [3], [4], [5], among many others, relatively
a small number of studies have focused on outage diagnosis
[6], [7]. Minimization of drive test (MDT)-based data can be
utilized for both detection [5] and diagnosis [8], [9] of outages.
However, utilizing such an approach also has problems, e.g.,
sparse MDT data [10].

The work presented in [6] used Bayesian classifiers for
fault diagnosis based on different network key performance
indicators (KPIs). The solution proposed in [7] used unsu-
pervised machine learning, self-organizing maps (SOM) for
outage diagnosis. However, SOMs are not robust to varying
distributions of data, which makes them nongeneralizable to
use with MDT reports, due to the sparse nature of MDT data.

Most relevant to our research are the works presented in
[8] and [9], where the authors proposed a fault diagnosis
solution using neuromorphic artificial intelligence (AI) and
classical machine learning methods, respectively. They used
synthetic MDT reports to generate coverage maps. Their
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analysis showed that random forest (RF) outperformed convo-
lutional neural networks (CNN) on coverage maps when MDT
data is available from the entire coverage area. However, real
network data is expected to be both sparse (due to variable user
equipments (UEs)) and noisy. Hence, the assumption in [8],
[9] is not practical for MDT-based data collection from a real
cellular network. Also, both these studies [8], [9] considered
faults in a single base station (BS), i.e., they assume a single
fault at a time which makes it not generalizable to the scenario
where multiple BSs can have faults simultaneously.

B. Contributions and organization

In this paper we address the limitations of the available
solutions for fault diagnosis highlighted in Section I-A with
the following key contributions:

1) To the best of the authors’ knowledge, this is the
first solution that can reliably diagnose multiple faults
in multiple BSs in the network, caused by both hard
outages(network failures leading to no coverage) or soft
outages (occurring due to the inefficient configuration of
network parameters).

2) We propose a solution that is robust to not only different
kinds of faults and BS locations, but also to variable
user densities in the network. This makes the proposed
solution more feasible to implement in a real cellular
network, where user density and distribution never re-
main static. In addition, in a real network, faults can
occur in different BSs, and they can be of different types.

3) To address user sparsity, we investigate different image
enrichment methods to reconstruct radio environment
maps (REMs) from raw/sparse data acquired from MDT
reports and perform a comprehensive performance eval-
uation of image enhancement techniques and quantify
their effect on various machine learning (ML) and deep
learning (DL) models from literature as well as on the
proposed model.

The rest of the paper is organized as follows: network
topology and data acquisition are presented in Section II. The
proposed framework based on CNN and data enrichment is
described in Section III. Results and insightful performance
analysis are provided in Section IV and Section V concludes
this study.

II. NETWORK TOPOLOGY AND DATA ACQUISITION

A. Network Topology

The framework we present in this paper is designed for
a real network but due to the unavailability of real data, a
realistic commercial RF planning software Atoll[11] is used
to collect MDT reports. The network topology considering
an area from Brussels City, Belgium is shown in Fig. 1. We
consider 15 different clutter types based on environmental
conditions and terrain profiles. Aster propagation (advanced
ray-tracing) is used as the propagation model because of its
ability to better capture the idiosyncrasies in the environment
as compared to empirical propagation models. We use the
same locations and configuration parameters of BS used by

Fig. 1. Network topology for generation of synthetic data

a real network provider for its deployment in Belgium. Table
I reports these settings. Therefore, the obtained coverage data
can be assumed a very close representation of the ground truth
of the area used in the simulation. The area of simulation is
13.292 km2 with 24 macrocell BSs (72 cells) to generate data
with multiple fault classes in the multiple BSs simultaneously.
The rest of the network settings are reported in Table I.

TABLE I
NETWORK SCENARIO SETTINGS

Network Parameters Values

Network layout 24 Macrocell BSs (eNodeBs)

Sectors per BS 3 sectors/cells per BS

Carrier frequency 2100 MHz

Simulation area 13.292 km2

Bin size 30m × 30m

Antenna height Actual site heights

Propagation Model Aster Propagation Model (Ray-tracing)

Clutter types 15 classes

Maximum transmission power 43 dBm

Cell individual offset (CIO) 0 dB

Antenna tilt 0o

Antenna gain 18.3 dBi

Geographical information
Digital Terrain Model (Ground heights) +

Digital Land Use Map (clutter classes)

B. Data Acquisition

We acquire MDT reports with four highly used fault classes
in literature for root cause analysis and self-healing frame-
works: cell outage, low transmission power, excessive antenna
uptilt, and excessive antenna downtilt [7], [8], [9]. Fig. 2
presents a visualization using signal-to-interference-plus-noise
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(a) Normal Coverage Map (b) Cell Outage (c) Low Transmit Power (d) Excessive UpTilt (e) Excessive DownTilt

Fig. 2. Coverage maps of different network conditions. (a) Normal (b) Cell/Site outage (c) Low transmission power, this image is showing when transmission
power drops to 25dBm (d) Excessive antenna uptilt, this is +20o tilt (e) Excessive antenna downtilt, -20o tilt.

ratio (SINR) maps of different fault classes when induced on
a selected cell in the designed network in the simulator. Fig.
2(a) represents a normal coverage scenario and the impact of
other fault classes on cell coverage is illustrated in Fig. 2 (b-
e). The parameter configuration of the four fault classes are
described as follows:

1) Cell Outage (CO): To simulate cell outage, we deacti-
vate the transmitter on a selected site in the simulator.
This will simulate a no-coverage fault scenario around
that cell. Fig. 2(b) is presenting CO scenario for high-
lighted cell.

2) Low Transmission Power (LTP): The maximum trans-
mission power is 43 dBm for a normal BS in our
designed network based on recommended value by [12].
We simulate LTP fault scenario by reducing the maxi-
mum transmit power of a cell to 25 dBm (we select this
value based on the industry experience of co-authors ).
Fig. 2(c) shows an LTP scenario.

3) Excessive Antenna Downtilt (EAD): To induce ex-
cessive antenna downtilt we change the tilt value from
0o to 20o. Both antenna uptilt and downtilt values are
selected based on co-authors’ industry experience. Fig.
2(d) present an EAD scenario.

4) Excessive Antenna Uptilt (EAU): Normal antenna tilt
is 0o. We change the tilt value from 0o to −20o, we
select this value based on our industry experience. The
impact of EAU can be seen in 2(e) for a selected cell.

To ensure the robustness of our solution, while generating
simulated MDT reports, we randomly select four cells out of
72 cells in total and induce a random fault in them through
a different independent random process. In this way, not only
we can have a different site (based on location in the network)
in every instance but also different types of fault (CO, LTP,
EAD, or EAU). We have 19933 different instances of the
network, each having 4 anomalous and 68 normal cells and
each anomalous cell with a different fault.

We then convert raw MDT reports into SINR radio envi-
ronment maps(REMs). These REMs can be sparse due to the
sparse nature of the data captured by the MDT reports from a
real cellular network. We perform image inpainting to enrich
the sparse REMs.

Fig. 3. Network coverage maps with various user densities (a) Full coverage
map (203 UEs/cell (1101 UEs per km2)). (b) 100 UEs/cell (550 UEs per
km2). (c) 80 UEs/cell (440 UEs per km2). (d) 60 UEs/cell (330 UEs per
km2). (e) 40 UEs/cell (220 UEs per km2). (f) 20 UEs/cell (110 UEs per
km2)

III. PROPOSED FRAMEWORK

This section presents the overall proposed framework con-
sisting of two major components; the pre-processing tech-
niques used for data enrichment, and the root cause analysis,
described as follows.

A. Data Pre-Processing

To ensure the robustness of our fault diagnosis solution we
consider various user densities for generating sparse coverage
maps, as shown in Fig. 3. Data pre-processing is an important
part of any framework which involves machine learning.
However, in our framework, its importance is even more
because there are hardly any self-healing solutions involving
image data for root cause analysis. A detailed view of data
pre-processing is present in the first block of Fig. 4. We are
converting raw MDT reports to SINR image maps, which are
sparse. To address sparsity, we use image inpainting methods
to enrich data before passing it on for root cause analysis.
We surveyed and selected the available methods, based on
accuracy and efficiency, in other domains, and applied those
methods to recover missing SINR values in the REMs. We
applied TELEA, biharmonic-equation based method, and fre-
quency selective reconstruction (FSR) methods to enrich the
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Fig. 4. Proposed Deep Learning-based Framework for diagnosing multiple faults in a multi BS network scenario Root Cause Analysis of multiple faults.

sparse coverage maps, but due to page limitation constraints,
we will only describe the best performing image enrichment
method below.

Frequency Selective Reconstruction (FSR): FSR recon-
structs missing SINR values using Fourier basis functions from
available neighboring SINR values in the REM. This is a
computationally expensive method but is highly parallelizable
and with the use of GPUs can achieve significantly accurate
results in considerably less time [13].

To evaluate the performance of image enhancement methods
we use root mean square error (RMSE), structural similarity
measure index (SSIM), and peak signal to noise ratio (PSNR)
as performance metrics; details and rationale of these metrics
can be found in [14]. A summarized performance evaluation
of these methods is given in Table II.

TABLE II
PERFORMANCE EVALUATION OF IMAGE INPAINTING METHODS

Method RMSE (dB) SSIM (%) PSNR (dB)

FSR 8.6 90 22.81

Biharmonic Equation 9.3 87 21.23

TELEA 9.7 85 20.84

B. Root Cause Analysis

This section elaborates the root cause analysis block of
Fig. 4. It explains the intuition behind using a CNN-based
model and details the implementation and hyper-parameter
configuration. It also elaborates the performance metrics to
compare the proposed model against state-of-the-art used for
root cause analysis.

1) Why a CNN-based deep learning model? The ratio-
nale behind using a CNN model for this study revolves
around two significant reasons, the tailor-made nature
of CNN for image data, and the robustness it offers
towards noisy data [15], [16]. The results of this research
show dominance of CNN against classical ML models
on sparse and noisy data. The results are presented with
a detailed explanation in Section IV. Fig. 5 provides
the architectural design (no. of hidden layers, no. of
neurons in each layer, kernel size, pooling, and dropout
details) of the proposed CNN model. We trained models
with a wide range of hyper-parameter values and tracked
the loss and accuracy graphs using TensorBoard, to
find an optimal CNN architecture. The hyperparameters
presented in Fig. 5 are the configuration of our top-
performing model, based on TensorBoard visualization.
A detailed explanation of each feature extraction func-
tion is given as follows:

a) Convolution: This operation extracts important hid-
den features e.g. boundary edges from the input
coverage map. In our study boundaries are very im-
portant to distinguish between coverage regions of
different sites. To keep the dimensions of the fea-
ture matrix unchanged we are using zero padding.
Dimensions of the output matrix of convolution
operation are defined as Equation 1 and 2.

Or =
(Ir − F + 2P )

S
+ 1 (1)

Oc =
(Ic − F + 2P )

S
+ 1 (2)
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Fig. 5. Proposed CNN-based deep learning model, extracts hidden features from coverage maps and performs multi-fault classification operation.

where Or , Oc , Ir, and Ic represent the number
of rows and columns of the output and input
matrix respectively, while F , P , and S represent
the size of kernel, padding, and length of the stride.
For example, the length of the input volume is
119×123 (as in 1st convolutional layer in Fig. 5),
kernel size is 3×3, length of stride is 1 and we are
using zero-padding of 1 (using Keras it can be set
as ’same’). Then the length of the output feature
matrix will be 119×123×no.of neurons.

b) Batch Normalization: To accelerate the learning of
a deep network and to address internal covariate
shift, batch normalization is used. This transforma-
tion normalizes the input to a layer by maintaining
its mean and standard deviation close to 0 and 1
respectively.

c) Pooling: The output feature map from a convolu-
tional layer is location-sensitive to the input image.
However, down-sampling reduces its sensitivity
and makes the feature extraction process robust to
changes. One of the techniques for down-sampling
is pooling which essentially down-samples the fea-
tures in patches of the feature map. In our case, we
use max-pooling to ensure the presence of the most
activated features.

2) Performance Metrics Since we propose a solution for
the diagnosis of multiple faults in multiple BSs simulta-
neously (multi-label multi-class problem), it can not be
fairly evaluated with accuracy (total correct predictions /
total number of instances). Unlike a simple classification
problem, anomaly detection problems require special
performance measuring metrics, due to the biased nature
of data towards normal class. Hence, we used the exact
match ratio (subset accuracy) due to the nature of the
problem we are solving. Every incorrect diagnosis is as
vital as a correct diagnosis because it can lead to poor
coverage around a BS due to a false alarm. For example,
if our root cause analysis system diagnoses EAU fault
for a normal site (false alarm), as a response it adds 20o

to the tilt value of that site, which will induce an EAD
fault to an otherwise normal site, that will lead to poor
coverage for users connected to the site.
Exact Match Ratio/Subset Accuracy (EMR): Accord-

ing to EMR, a diagnosis made by the model will be
correct only if the network condition of all the sites
in the network are diagnosed correctly. In this study,
we have a network designed with 72 cells, even if the
network condition of 1 out of 72 cells at a given instance
is predicted incorrectly, that instance will be considered
as an incorrect prediction. This is considered a very strict
performance metric, but to present a critical performance
analysis we include it in our results. EMR is defined by
Equation 3

EMR =
1

N

N∑
i=1

I(Pi = Ti) (3)

where I is a proposition function, which returns 1 if the
network condition of all N sites is correctly predicted,
else returns 0.

IV. RESULTS AND COMPARATIVE ANALYSIS

We compare the performance of the proposed CNN-based
solution against several methods used for detection and di-
agnosis of outages from literature, including SVM and Ran-
dom forest (RF) [8], [9]. We present an investigation of our
approach at different UE densities to analyze its efficacy in
realistic settings (i.e. robustness to the sparsity of MDT reports
in a cell/area). Fig. 6 presents the performance evaluation of
mentioned ML/DL models on sparse data (considering various
UE densities) and enriched data (enhanced using FSR image
inpainting mentioned in Section III-A). In Fig. 6(a)-(b) we
provide an EMR based comparative analysis on sparse and
enriched data.

Fig. 6(a), shows that SVM and RF both perform slightly
better than CNN on full coverage maps (complete map, com-
ing from the simulator without a need of any data enrichment).
This justifies the popularity of RF [8], [9] for self-healing in
literature. But, a drastic drop in diagnosis accuracy can be seen
for SVM and RF on sparse data, EMR drops from 90.2% to
69% and from 92% to 71.3% respectively, as the density of
users drops from 203 to 100 users/cell. The downward trend
in performance continues as the number of users decreases
per cell. EMR of SVM drops to 13.5% when users per cell
decrease to 20. On the other hand, the results show that the
proposed CNN-based solution is showing robustness to the
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(a) Exact match ratio performance on sparse data

(b) Exact match ratio performance on enriched data

Fig. 6. Performance comparison of proposed CNN-based solution against
classical ML models on sparse and enriched coverage maps data (using FSR
image inpainting). Note: (Data having 203 users per cell are full coverage
maps, so does not require enrichment, that is why performance remains same
for complete maps on sparse and enriched data ) (a) Exact match ratio
comparison on sparse data, (b) Exact match ratio comparison on enriched
data

user sparsity and can diagnose faults with an EMR of 43%,
even when users are as sparse as just 20 users/cell.

An encouraging insight is shown in Fig. 6(b) is the per-
formance of CNN on enriched data, as compared to sparse
data (shown in Fig. 6(a)). From Fig. 6(b), it is observed that it
can diagnose faults with an EMR of 62% on data enriched
from as sparse as 20 users/cell. This is a promising 19%
improvement in EMR, as compared to RF, and a whopping
39% improvement over the SVM algorithm, in exact match
ratio on equally sparse data. These results justify our intuition
for using a CNN-based root cause analysis solution because
it is a universal learner and inherently robust to noise, as
highlighted in Section III-B.

V. CONCLUSION

This paper presents a framework for root cause analysis of
coverage-related anomalies in emerging cellular networks. Our
focus during this research remained on the practicality of the
solution. Firstly, we considered a complex scenario of multiple
faults in multiple BSs simultaneously. Secondly, we presented
our analysis on varying levels of MDT data sparsity (user
densities) in the network. To address the data sparsity issue,
we used image inpainting methods to enrich sparse coverage
maps. The sparsity itself and then the inpainting methods add

noise to the data, which makes diagnosis harder. However,
our proposed CNN-based framework maneuvers well with the
noise. Results show that the CNN-based model can diagnose
faults with an exact match ratio of 62% on highly sparse MDT
reports data in a multi-BS multi-fault scenario.
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