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Abstract—In wireless heterogeneous networks (HetNets), com-
plexity is an intrinsic property. This paper presents agent-based
modeling (ABM) as a tool to optimize complex HetNets. We
introduce and analyze a HetNet ABM model that employs parallel
algorithms for interference management, resource allocation,
and load balancing at both micro and macro levels. Two
reinforcement learning (RL) algorithms jointly work together
in the model to resolve co-tier and cross-tier interferences. The
first RL algorithm controls the transmission power of the small
cells, whereas the second assigns the users to the sub-bands
with less interference levels. Concurrently, the user association is
decided by the users based on their preferences and the resources
available at the cells. The model is analyzed in three different
operation modes, by switching processes on and off. Results
show that individual processes contribute to overall system
performance, while jointly maximizing the network’s aggregate
signal-to-interference-and-noise ratio (SINR) and minimizing
load-induced latency by efficient load balancing.

I. INTRODUCTION

Heterogeneous networks (HetNets) and small cell densifi-
cation are the key components of 5G and Beyond wireless
networks. The goal of cell densification is to improve network
parameters including capacity, coverage, latency, and load
distribution. However, a number of technological challenges
constrain the deployment of small cell networks. The two
most critical challenges discussed in the literature include in-
terference management and self-organization [1], [2]. The self-
organization, self-configuration, and self-analysis capabilities
are important as they significantly contribute toward the overall
network performance.

While optimizing a HetNet, there is a certain criteria to
consider and several trade-offs to resolve [3]. The goal is
to jointly optimize different HetNet parameters for better
interference management [4], user quality of experience [5],
resource allocation [6], latency [7], user association [8], cell
load balancing [9], energy efficiency [10], [11], mobility and
handovers [12], costs of deployment [13], optimal efficiency
trade-offs [14], and coexistence with other radio access tech-
nologies [15]. Therefore, a suitable modeling framework is
needed to formalize the multi-dimensional optimization prob-
lem completely and then solve it to yield optimal operating
parameters.

In the literature, many simulation paradigms have been
presented for such dynamic cases [16]. The game-theoretic
system is one of the major modeling paradigms [17] that study
strategies and interactions among players who behave ratio-
nally in order to maximize their benefits [18]. The assumption
of purely rational agents, on the other hand, is not necessarily
represented in practical networks.

Multi-agent Reinforcement Learning (RL) is a common
machine learning-based paradigm for HetNets. This paradigm
depends on players making decisions in their environment
to maximize their utility function [19]. A multi-agent RL
framework faces several challenges [20], [21]. For the 5G
and beyond HetNets, high-dimensional state and action space
adds non-practical computational complexity and long learning
time. Another difficulty is choosing the reward functions,
particularly when we have several types of agents.

In this paper, we exploit agent-based modeling (ABM) to
address the aforementioned optimization problem. ABM is a
tool that studies a complex system’s emergent activity on a
macro level by modeling micro-scale interactions within a
population of agents [22]. ABMs are studied in simulation
environments, with players/agents following laws that do not
necessarily relate to utility functions [23]. Unlike game theory,
ABMs allow the designer to model different interacting games
within the same model without creating an analytical frame-
work. It also allows testing of various player heuristics without
assuming cognitive abilities. Therefore, it can implement real
industry scenarios and evaluate them across all the network
parameters.

The main contributions of this work can be summarized as
follows:

• We propose a modeling paradigm that considers the
intrinsic complexity of HetNets. It has the capability to
incorporate a diversity of game-theoretic, machine learn-
ing, and rule-based algorithms within the same model.
Which was not possible before with analytical models.

• We then develop a novel agent-based modeling (ABM)
approach to examine and analyze the complex interac-
tions of HetNet nodes. The network nodes in this model
are running in parallel as independent entities and the
learning algorithms are running concurrently.
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Fig. 1: Two tier network architecture, representing the main
(desired) link as a solid line and interferers with dotted lines.

• We simulate the model using a stochastic geometry based
environment. Our results show that the proposed approach
using two concurrent reinforcement learning based algo-
rithms offers efficient resource allocation and maximizes
the network’s aggregate signal-to-interference-and-noise
ratio (SINR).

The rest of the paper’s organization is as follows. In Section
II, the HetNet system model is presented. The proposed agent-
based model is discussed in Section III, whereas Section IV
is dedicated to simulations and results. Finally, we conclude
the paper in Section V.

II. SYSTEM MODEL

In this section, a distributed system model is proposed to
study a complex practical HetNet. The two-tier system is com-
posed of three types of agents: macrocells (MCs), small cells
(SCs), and user equipments (UEs). The spectrum is shared
between macrocells and small cells, and is reused several times
within the same macrocell to increase the network spectral
efficiency.

A. Network Model

The modeled HetNet is a 2-tier network with macrocells
forming the main network and small cells used as the sec-
ond tier cells, as shown in Fig. 1. A macrocell’s assigned
spectrum is reused at the lower teir. The system is based on
the long-term evolution (LTE) time-frequency resource block
numerology. The full network spectrum is used orthogonally
between macrocells.

B. Cell Association

UEs have different preferences regarding SINR, latency,
and the number of requested resource blocks (RBs). Affected
by what the cells are offering, the UEs decide the cell
association. The cells have the responsibility of coordinating
and distributing the spectrum between each other. Also, they
manage the network load balancing and interference levels at
the UEs.

C. Channel Model

The large scale path loss PL used in our model is the
simplified free space model: PL(dB) = κ + 10ζ log10(d) ,
where d is the distance between the UE and the serving cell, ζ
is the path loss exponent, and κ is a unitless factor that depends
on the average channel attenuation, frequency of operation,
and antenna characteristics.

In the presented downlink scheme, the interferences induced
by spectrum reuse are cross-tier interference and co-tier inter-
ference. For cross-tier interference, at small cell si user from
macrocell m is given as Isi,m. The interference from a small
cell to a macrocell user is given as Im,si . In comparison, the
co-tier interference from a small cell to a user of another small
cell is given as Isi,sj . The main (desired) link is represented
as a solid line in Fig. 1, while the interference links are
represented with dotted lines. The SINRs γn,m, and γn,s at
the nth user served by macrocell m and the small cell s, on
the rth resource block, are formalized respectively as:

γ(r)
n,m =

|h(r)
n,m|2p(r)m

N
(r)
n,m +

∑
s∈S |h(r)

n,s|2p(r)s

, (1)

γ(r)
n,s =

|h(r)
n,s|2p(r)s

N
(r)
n,s +

∑
m∈M |h(r)

n,m|2p(r)m +
∑

j∈S,j ̸=s |h
(r)
n,s|2p(r)s

,

(2)
where S is the set of small cells and M is the set of macrocells,
N

(r)
n is the noise variance, and hi,m, and hi,s are the channel

coefficients from the macrocell and small cells, respectively,
to user n. p(r)s are the transmit powers of the macrocell and
small cells over resource block r, respectively.

D. User Requests

The user n creates u requests per unit time t, with rate λr.
This random variable u follows a Poisson process. For each
user, the number of requested resource blocks x is a truncated
normal distribution over the interval 0 < x < ∞, with mean
µ
(n)
x and standard deviation σ

(n)
x .

III. PROPOSED AGENT BASED ARCHITECTURE

The proposed system architecture is described with several
processes performed by each agent (UE, MC, or SC), and
a set of interactions between those agents. Each process is
formalized with a flowchart. Hence, agent’s behavior can be
summed by several processes running asynchronously and in
parallel.

A. User Terminals ABM Process

Fig. 2: User equipment flowchart: Service request and usage.
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A UE is assumed to be exchanging information with several
nearby cells (macrocells or small cells) over the control
channel, but it receives the service only from one of them.

The flow chart in Fig. 2 describes a resource block request
and utilization cycle. The UE is initially at the ‘Idle’ state.
Then it moves to the ‘Make Request RBs’ state when a
countdown timer reaches zero. The timer value is a random
variable τ that corresponds to the interval time between two
requests. It is assigned a new value after the timer expires,
following the exponential distribution: f(τ) = λ

(n)
r e−λ(n)

r τ ,

where λ
(n)
r is the request rate for user n. This ensures a

Poisson distribution for the number of requests per unit time.
The cells then send offers that depend on their transmit

power levels, as we will observe in the following sections. The
offer is composed of the number of offered resource blocks
RBs, the start and end in the frequency domain given by f1
and fend respectively, the start and end in the time domain
given by t1 and tend respectively, and the cell transmit power
Ptx. The UE then collects all the offers at the ‘Receive offers’
state, chooses the best offer, and sends an accept response to
the corresponding cell. The UE chooses the best offer based
on the following mathematical utility function:

U(c) = arg max
c

(
RBsc × wr log2(1 + 10(γc/10))

1 + wd(tend − t)

)
, (3)

where the subscript c corresponds to cells. This function sets
the UE service preferences by assigning the weights: wr for
the expected throughput at the receiver, and wd for latency. The
wr and wd values are proportional to the importance of each
corresponding factor to the UE. Note that the value (tend− t)
represents how long it takes for the RBs to reach the UE.
During the ‘Use resources’ state, the UE measures the quality
of service affected by the interference levels. Then it is shared
with the serving cell in the ‘Feedback’ state. The UE reports
its feedback to the serving cell before returning to ‘idle’. The
feedback holds information about the interference levels, the
SINR, and the delay.

B. Sub-band Management at the Macro- and Small Cells

In our design, the cells are responsible for two main
tasks: interference management and cell load balancing. In a
spectrally efficient system, the small cells share the spectrum
with the upper-tier (macrocells). In the downlink scheme,
the macrocells’ bands are divided into sub-bands SB higher
in granularity than a resource block. The sub-bands are
reused for several times. For a single reuse case, the small
cells and the macrocells coordinate to minimize the cross-
tier interference by adjusting the small cells’ transmit power
levels. The macrocell users’ feedback on the interference levels
is used to adjust the small cells’ transmission powers. The
decisions for power level allocations are taken at the MCs
level. For a second reuse case, the sub-band will be used
twice at two different small cells. More reuse levels increases
the interference levels between the network cells, and enlarges

the optimization space. Therefore, the twice reuse case is the
one evaluated in the simulations section.

C. Reinforcement Learning Processes
Reinforcement learning (RL) is used for two processes; first,

to adjust the power levels in the reuse schemes; second, to
assign the users to the sub-bands with highest performance
level. We represent those RL processes in the following two
subsections.

1) Small Cell Transmit Power Management : This process
is running under the macrocell agents. Initial power levels are
assigned for the small cells. Then it enters a loop of collecting
rewards and updating the small cell power values. Due to
the nature of the problem, the multi-armed bandit method is
used as our model-free reinforcement learning method [24].
A multi-armed bandit algorithm has a number of actions to
choose from, hence the term ‘arm’. Learning is done over
rounds; in each round, depending on the exploration factor ϵ,
an arm is chosen, and the corresponding reward Ri is collected
during the round duration.

The macrocell’s multi-armed bandit algorithm list of actions
is Ai = {a(p)i }p∈{P1,P2,...,Pk}, where a(p)i represents the power
transmit level for the reused ith sub-band SBi, from a set of
transmit power levels, and k is the number of the power levels.
The value function Q holds an evaluation for the expected
reward for each action.

The value function is updated via the recursive equation:

Qt+1(Ai) = (1− α)Qt(Ai) + α(Ri) , (4)

where α is a learning-discount factor.
The reward function used for the proposed model is the

aggregate SINR for all RBs in sub-band SBi, over the last
learning episode Te: Ri =

∑
t1>t−Te

∑
RB∈SBi

γRB,t1 .
The power management RL algorithm is shown below in

Algorithm 1. Deploying this algorithm determines the proper
reuse power levels to achieve the maximum reward over each
sub-band.

Algorithm 1 Small Cell Sub-band Power Management
Initialization Q(Ai) = 0 ∀ i
Initialize the reuse power levels P (SB)
For each Sub-band SB define power levels list Ai

while True do
for i ∈ Sub-bands do

if rand(.)< ϵ then
Explore: choose action from Ai randomly

else
Exploit: choose action Ai(t+1) = arg max

ai

Qt+1

end
Receive rewards Ri(t+ 1), and update Q table

end
end

In the second reuse case, two small cells trans-
mit different power values for each sub-band. There-
fore, the action space is two dimensional: ai,j ∈
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Algorithm 2 User sub-band choice learning algorithm.
initialization Q(An) = 0 ∀ n
define list of sub-bands at this cell
while True do

if rand(.)< ϵ then
Explore: Chose action from An randomly

else
Exploit: Choose action An(t+ 1) = arg max

an

Qt+1

end
Receive rewards Rn(t+ 1), and update Q table

end

[(PSi1
, PSj1

), (PSi1
, PSj2

) ... (PSiK
, PSjK

)] , where i and j
are the notation of the same sub-band for two different small
cells, Si and Sj .

2) User to Sub-band Association: UEs can have different
performance levels for different sub-bands at the same cell.
This is affected by the distribution of the set of users served by
the cell and their distances from the interfering cell. Therefore,
this method is proposed to allocate each UE on the sub-band
that suits its position with respect to the other agents (cells
and UEs) in the network.

A multi-armed bandit process starts by assigning the served
users to the available sub-bands randomly. Then it keeps
collecting the service feedback from the UEs.

The rewarding functions are formulated from the collected
feedback. Each UE has its own Q-table that gets updated
from the reward functions. The Q-table holds the values
reflecting the learned performance per sub-band. The learn-
ing algorithm components for the nth user include actions
An = {a(s)n }s∈{1,...,NS} , where a

(s)
n represents the action

of switching to one of the cell sub-bands, rewards Rn, value
function Q, and explorer factor ϵ.

The proposed reward value for this algorithm is: Rn =
γn

1 + wdntdn

, where γ is the SINR, and td represents the

delay experienced by the UE during the last served RBs. The
factor (1 + wdtd) normalizes the SINR level by the latency
level to ensure that the users associate to the sub-bands, not
only based on the SINR but also the sub-band load induced
latency. The learning algorithm is described in Algorithm 2.

Receive user
requests  

Make offer

Fig. 3: RB assignment flow chart.

MC

d1

d2

d3

d4

SC2

SC4

SC1

SC3

Fig. 4: Simulation environment.

D. Resource Blocks Allocation ABM Process

We close the system model with the small cell RB assign-
ment process illustrated in Fig. 3, which basically elaborated
on the mechanism of the SC response to UE requests. The SC
process keeps listening to the UE requests. Once it receives
a request, it finds the sub-band which is suitable for this UE.
The suitable sub-band is already determined in the RL process
described in Section III-C2.

Now based on the SC current load, an offer is formulated.
Ideally, if the SC is not congested, the offered RBs will be
the same number as the requested RBs. However, if the SC
is congested ( cell load > specific value Lh), a discounted
number ((1−Dfactor)×RBs) is offered.

Finally, after the UE has finished using the RBs, the SC
receives the users’ feedback.

IV. RESULTS AND DISCUSSION

Parameters Values

Users positions uniformly distributed in the area
[x=[0, 10] km, y=[0, 10] km]

Number of users 500 users
Macrocell tx power 30 dBm

Small cell tx power range [15, 25] dBm
Pathloss model 25 log10(d) + 40

Number of RBs per sub-band 10 RBs
Request rate for UEs λr = 0.012 request per T

T RB duration
Requested RBs statistics Avg. RBs per request= 4 ,

Std. dev. RBs per request= 2
RL1 Learning episode length 200 T

RL1 explore factor (ϵ) decreasing from 1 to 0 over [0 7000 T]
RL2 Learning episode length 1 UE-request cycle

RL2 explore factor (ϵ) fixed 0.3
RL1 and RL2 α factors α1 = α2 = 0.3

TABLE I: Simulation parameters.

In this section, we developed the proposed ABM architec-
ture shown in Fig. 4 and simulated it with the parameters in
Table 1. We have a MC in the middle and four SCs with
distances d1 = 2.6 km, d2 = 2.7 km, d3 = 2.8 km, and
d4 = 2.9 km. An environment module is responsible for
instantiating the agent instances and managing the order of
calling those objects. Parallelism is emulated by discretizing
the time into units, and the environment loops over all the
agent instances in each time unit (also called tick). The
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network has three sub-bands that are reused twice between
the macrocell and the small cells.

The system is evaluated under two different modes of
operation. In the first mode, the first learning algorithm (RL1),
responsible for power management, is enabled, and the second
algorithm (RL2), responsible for user sub-band association, is
disabled. In the second mode, both the algorithms RL1 and
RL2 are enabled.

MC user SC1 user SC2 user

SC3 user SC4 user
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(f) SB3, RL1 On/ RL2 On.

Fig. 5: Users distribution for three sub-bands.

The resultant user distribution between the three sub-bands
is shown in Fig. 5, where a comparison between the two
modes is demonstrated side-by-side in geographical space.
For the first mode (Fig. 5a, 5c, and 5e ), the macro cell
UEs geographical distribution is more uniform than in the
second mode. In the second mode (Fig. 5b, 5d, and 5f ),
due to the second RL algorithm, the macrocell UEs avoid
the small cell interference, and they move to sub-bands with
less interference. Which allows the small cells to transmit
with higher power levels resulting in more coverage, hence

more users. Next, we plot the complementary cumulative
distribution function (CCDF) for the latency experienced by
the UEs in Fig. 6. Latency is induced by request queuing at the
high-loaded cells. We see that in the case of the second mode,
UEs experience less latency due to better load balancing. Then

0 2 4 6 8 10 12

Latency (T duration)

0

0.2

0.4

0.6

0.8

1

C
C

D
F

(T
)

RL1 on

RL1 on- RL2 on

RL1 and R2 on - Dfactor=0.3

Fig. 6: Latency CCDF.

as an attempt to have better load balancing, we increase the
discount factor to 0.3 for a load above Lh = 50% for all the
cells. The resultant latency CCDF is shown in Fig. 6, whereas
the corresponding aggregate SINR, average latency, and tier
loads are listed in the summarizing Table II. We observe that
this operation mode has lower latency and the highest SINR
and load balancing, on the expense of discounted number of
RBs served by the whole network.

TABLE II: Results Summary

RL1 RL2 D-factor Aggregate SCs load MC load Average
SINR (dB) latency

ON OFF 0 57 dB 16 % 90 % 3.3 T
ON ON 0 62 dB 23 % 74% 2.8 T
ON ON 0.3 66 dB 21% 67% 0.6 T

Below, we compare with similar systems proposed in the
literature. These frameworks have been adapted in our archi-
tecture to be comparable with our proposed RL algorithms.
For the first study [25], the utility function of Algorithm 1 is
replaced with their proposed utility function:

U1 = arg max
pi∈P

∑
t1>t−Te

∑
k∈K

log2(1 + γ
(RB)
k )1{γ(RB)

m >Γth}
,

(5)
Algorithm 2 is deactivated as it has no relevance to this
study. The second framework performs inter-cell interference
coordination ICIC, [26], [27]. Like our study, it is composed
of two parts: sub-channel allocation and power assignment
algorithms. The utility function used for Algorithm 1 and 2
are as follows:

V1 = arg min
pi∈P

∑
t1>t−Te

∑
RB∈SBi

IRB,t1 + (wdICIC
td) , (6)

V2 = arg min
sn∈S

(IRB + (wdICIC
td)) . (7)

A delay factor ωdICIC
was added to manage the latency

induced by unbalanced load distribution.
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Fig. 7: Comparison with existing literature: Per-user through-
put CDF.
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Fig. 8: Comparison with existing literature: latency CCDF.

The results of the comparisons are shown in Fig. 7 and
Fig. 8, for the per-user throughput CDF, and per-user latency
CCDF. The average throughput is found to be higher for the
maximum aggregate SINR utility function case. On the other
hand, the ICIC framework has a slightly lower number of
low throughput users. This is due to the focus of the ICIC
algorithm on minimizing the interference. The work in [25] has
a higher number of low throughput users due to not deploying
a sub-band or a sub-channel algorithm, as in Algorithm 2.
The per-user latency CCDF is a measure of the efficiency of
load distribution between the macrocell and small cells; and
amongst small cells. The two aggregate SINR based methods
achieved lower latency values than the minimum interference-
based method. The usage of Algorithm 2 added latency due to
the users of preferring to utilize sub-bands that are not reused
more than the reused sub-bands. This results non-uniformity
in sub-band utilization, hence the slight increase in latency. In
the case of the ICIC algorithm this imbalance can be managed
by modifying the utility function in Algorithm 2 to take sub-
band association decisions based on the delay. Hence, we can
also observe the effect of wd on the latency results.

V. CONCLUSION

This paper sheds light on the complex nature of HetNets
and proposes an ABM framework through which a complex
dynamic network can be formalized. Agent-based modeling
is a computational method that can create extensive models
with various levels of rationality at the agents. It incorporates
rule-based behaviors and learning algorithms within the same

model. We also proposed a client-driven system model, in
which cells control power and spectrum based on user requests
and feedback. The proposed ABM uses two concurrent rein-
forcement learning based algorithms offering efficient resource
allocation, interference management, and load balancing. The
first RL algorithm on a multi-armed bandit problem was
used to manage the transmit powers of small cells in order
to maximize the network’s aggregate throughput. The other
RL algorithm was used to drive user sub-band association
in order to maximize SINR while minimizing user latency.
In the simulations section, the emergent behavior was shown
in the users’ distribution within sub-bands and geographical
space. Also, The coordination gain between the two learning
algorithms was shown. Further, we show that the discounted
offer rule’s adds to the network aggregate SINR, and enhances
load balancing, and load induced latency performance. Finally,
a comparison with similar work in the literature was performed
for more insight on the enhancements of our work.
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