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Abstract—The performance of user-centric ultra-dense networks
(UCUDNs) hinges on the Service zone (Szone) radius, which is
an elastic parameter that balances the area spectral efficiency
(ASE) and energy efficiency (EE) of the network. Accurately
determining the Szone radius requires the precise location of the
user equipment (UE) and data base stations (DBSs). Even a slight
error in reported positions of DBSs or UE will lead to an incorrect
determination of Szone radius and UE-DBS pairing, leading to
degradation of the UE-DBS communication link. To compensate
for the positioning error impact and improve the ASE and EE
of the UCUDN, this work proposes a data-driven optimization
and error compensation (DD-OEC) framework. The framework
comprises an additional machine learning model that assesses
the impact of residual errors and regulates the erroneous data-
driven optimization to output Szone radius, transmit power, and
DBS density values which improve network ASE and EE. The
performance of the framework is compared to a baseline scheme,
which does not employ the residual, and results demonstrate that
the DD-OEC framework outperforms the baseline, achieving up
to a 23% improvement in performance.

Index Terms—User-centric ultra-dense networks (UCUDNs),
Positioning errors, Machine Learning, Residual learning, and
multi-objective optimization.

I. INTRODUCTION

Emerging wireless networks are adopting dense deployment
to support an array of applications with diverse requirements
[1]. The cellular network is required to simultaneously facilitate
high data-rate extended reality applications, ultra-reliable low-
latency communication for intelligent transportation systems,
and energy-constrained devices with low data rates, such as
surveillance systems or body area networks [2]. The dense
deployment of base stations and heterogeneity of services make
network management increasingly complex as the number of
configuration parameters grows exponentially. In this context,
Artificial Intelligence (AI) and Machine Learning (ML) tech-
niques demonstrate breakthrough performances, leading to an
era of AI-based wireless network configuration as an inevitable
future [3], [4]. Although mathematical and analytical tech-
niques are still useful, data-driven models undoubtedly play
a complementary role in improving future network design
and operational performance. Hence, data-driven modeling is
employed for mobility prediction, proactive handovers, network
fault diagnosis, and other tasks [5].

In addition to incorporating intelligence into emerging net-
works, new architectures for 5G and beyond networks that
can quickly adapt to changing service requirements are being

explored. One such elastic architecture is the user-centric archi-
tecture with flexible service zones, which is gaining recognition
due to its promising benefits, such as lower interference, im-
proved area spectral efficiency, and better quality of experience
(QoE) by eliminating cell-edge users [6], [7]. These benefits are
realized by serving users within non-overlapping flexible service
zones (Szones) based on their service requirements. The Szone
of a user-centric ultra-dense network (UCUDN) and serving
data base station (DBS) activation is controlled by a central
controller, which requires accurate user equipment (UE) and
DBS location information for efficient network operation and
resource allocation.

While accurate location information is also necessary for base
station (BS) centric networks in tasks involving network au-
tomation and self-healing, its importance increases in UCUDNs.
Even a slight error in the position of the UE or the DBS
can result in scheduling UEs that are in close proximity to
each other or activating DBSs that are far from the UEs. Both
scenarios can result in high interference, which can have a
detrimental effect on network performance. Therefore, in real-
world UCUDNs, where the central controller may not have
access to error-free locations of all UEs and DBS, the use of
AI and ML techniques to compensate for imperfect location
information is essential for its data-driven operations [8], [9].

Characterization of the impact of positioning errors in tra-
ditional BS-centric networks has been carried out in several
studies [10]–[12]. The reliability of the data-based autonomous
coverage estimation in the presence of UE and BS positioning
error was investigated and quantified in [10]. Onireti et. al., [11]
demonstrated that inaccuracies in positioning techniques could
result in faulty associations, leading to degraded area spectral
efficiency (ASE). This issue is further exacerbated by the
increased BS density in ultra-dense networks. In [12], the
authors demonstrated that an optimal bin width could mitigate
the effects of positioning and quantization errors, resulting in
the most accurate coverage estimate.

Most existing works on UCUDNs assume accurate location
information for UEs and DBS [8], [9], [14], and there has been
very little work on investigating and understanding the impact of
positioning error. Erroneous position estimates were considered
in [13], where time-series forecasting was utilized to predict
the trend of received signal power, ASE, and energy efficiency
(EE) values, with varying three configuration and optimization



parameters (COPs), namely, transmit power, Szone radius, and
DBS density. The prediction was restricted within a prediction
window, and only a limited number of COP combinations were
explored. Moreover, the error prediction was not utilized to
determine the optimal COP combination values, which jointly
optimize the network performance. In this work, we adopt a
different approach compared to [13], and an AutoML model is
trained to learn the impact of position error on network key
performance indicators (KPIs). This error characterization is
then utilized to compensate for the joint KPI optimization and
yield improved network configuration values of transmit power,
Szone radius, and DBS density. The contribution of this paper
is summarized below.

• We propose a data-driven optimization and error com-
pensation (DD-OEC) framework to jointly maximize two
KPIs, namely, ASE and EE, where UE service is impacted
by the positioning error. The framework adopts a data-
driven approach and utilizes an AutoML module for learn-
ing the relationship between the COPs and the KPIs. The
trained ML model is then employed for heuristic multi-
objective optimization.

• We demonstrate that the candidate COP solution derived
from data with positioning errors is suboptimal. To mitigate
this adverse impact of positioning errors, we employ a
novel AutoML model to learn the residual error obtained
from the difference between the current erroneous database
and a historical error-free database. This residual error is
then utilized during the optimization process to compute
COP values that improve the corresponding KPI values.

• The performance of the proposed DD-OEC is compared
with a baseline scheme that does not take into account the
residual. Simulation results reveal that the proposed DD-
OEC scheme is able to learn the residual and incorporate
it to perform better than the baseline scheme. Therefore,
the DD-OEC optimization is necessary to compensate for
the error impact on the optimization solution.

II. SYSTEM MODEL

We consider a UCUDN, where the DBSs and the UEs
are assumed to be distributed randomly over an area using a
Poisson point process. The density of the DBSs and the UEs
is represented by λdbs and λue, respectively. All the DBS are
equipped with a single omnidirectional antenna and transmit
with the same power. A macro BS acts as the central controller,
collecting data from the UEs and scheduling them during each
transmission time interval. The controller creates virtual non-
overlapping Szones, of radius Rsz , around the scheduled UEs
and activates a DBS within each Szone to serve the respective
UEs as shown in Fig. 1b. This ensures that there is at least a dis-
tance greater than 2Rsz between the scheduled UEs. Moreover,
the UE is served by the DBS, having the best channel power,
located within a distance of Rsz from the UE. Consequently,
if the distance between UEs is less than 2Rsz , then they are
scheduled in different TTIs based on scheduling priority. This
scheduling and activation criterion limits the interference to
the serviced UEs. Moreover, if a UE has no DBS within its

Szone, the network can adjust and increase Rsz to serve the
disadvantaged UEs.

A. Channel Model
We adopt the close-in two-slope path-loss model [15],

PL(d) = −F (f, 1m)dB − 10l1 log d− 10l2 log

(
d

dt

)
u(d− dt),

(1)

where d is the 3D distance between the UE and BS,
F (f, 1m)[dB] = 20 log10

(
4πf
c

)
is the free space pathloss in dB

at a transmitter-receiver distance of 1 meter at carrier frequency
f with c representing the speed of light, u(·) denotes the unit
step function, dt is the breakpoint or threshold distance, l1
and l2 are the path loss exponents for a distance less than dt
and greater than dt, respectively. The signal-to-interference plus
noise ratio (SINR) for UE x is given as,

γx =
PxGxχx10

PL(dx)
10

N0 +
∑
∀i∈I

PiGiχi10
PL(di)

10

, (2)

where Px is the transmit power of the serving DBS, Gx is
the downlink antenna gain of the serving DBS, χx denotes the
channel shadowing modeled as a log-normal distribution with
0dB mean and 4dB variance, dx is the distance between the
serving DBS and UE x. N0 is the thermal noise power, Pi

and Gi are the transmit power and antenna gain of the i-th
interfering DBS, respectively. χi shows the channel shadowing
for interfering BS i modeled as a log-normal distribution with
0dB mean and 4dB variance, and di is the distance between
UE x and the i-th interfering DBS. I is the set of all interfering
BS.

B. Key Performance Indicators:

The performance of the UCUDN is determined based on
area spectral efficiency and network energy efficiency. ASE is
defined as the number of bits that are transmitted to a UE from
a DBS per unit bandwidth per unit area and is mathematically
expressed as θse = 1

A

∑
∀x∈U

log2(1 + γx), where U is the set

of all served UEs in the network and A is the simulation area.
EE is defined as ηee = A

PT
θse, where PT is the total power

consumption of all CBS and DBS in the network following the
network energy consumption model in [16].

C. Positioning Error Impact and its Modeling

In UCUDN, the central controller requires exact location
information of the UEs and DBSs for scheduling, DBS acti-
vation, and determining Rsz . However, in practical systems,
only estimates of the positions are available1. These positioning
errors affect UE scheduling, DBS activation, and Szone radius.
For instance, it can lead to the scheduling of UEs that are spaced
less than 2Rsz apart, thus, increasing the interference and
lowering the QoE. Similarly, a DBS can be activated which is
outside the Szone of the UE, again resulting in lower reference

1Although there can be various other sources of imperfections such as channel
modeling errors, quantization errors, etc. however, the scope of this paper is
limited to the impact of error in UE and DBS positions.



(a) Positioning error modeling. (b) The data-driven optimization and error compensation modeling (DD-OEC) framework.

Fig. 1: Positioning error modeling, and the DD-OEC framework for the data-driven optimization and error compensation COP-KPI
optimization. This framework includes synthetic data generation, AutoML based model fitting, and multi objective optimization.

signal received power (RSRP) and increased interference to
other UEs.

For error modeling, we assume that the ideal position of a
DBS or UE will be uniformly distributed within the circular ring
of error-radius, Rer, centered around the position estimates. A
lower value of Rer will indicate a more accurate estimate and
vice versa. In the subsequent discussion, we define perceived
distance as the distance between the UE and DBS based on
the position estimates and actual distance as the true physical
distance. The former is shown by the subscript ‘e’, and the latter
by ‘a’ in the distance d in the following discussion.

To elaborate the positioning error impact, we assume a UE x
and two DBSs A and B as shown in Fig. 1a. In the ideal case,
referred as Case J, the actual and reported positions of UE x
and DBS A are the same; hence the Szone is shown by a green
solid circle in Fig. 1a, and the SINR depends on the actual
distance dAa . However, with positioning errors, two scenarios
occurs based on the error magnitude, as shown in Fig. 1a.

• In low error regimes, shown as Case L, despite the position
errors, the UE-DBS association is not changed and remains
the same as the ideal case. However, despite this ideal-like
association, the central controller allocates resources based
on the perceived distance, dAe , which is different from the
actual distance dAa .

• In the high error regimes, the positioning errors cause
a change in UE-DBS association, i.e., UE x is now
associated with the distant DBS B instead of DBS A due
to lower perceived distance dBe , as shown in Case H in
the figure. It is possible that in this case, the DBS B
might actually lie outside of the S-zone. As a result, in
addition to the sub-optimal resource allocation (based on
the perceived distance), the larger value of dBa , leads to a
significant deterioration of SINR at the UE.

Thus, from this discussion, it can be summarized that position-
ing errors can result in significant variations in the perceived
distances between UEs and DBSs. This, in turn, can lead
to suboptimal resource allocation and UE-DBS association,
negatively affecting the network’s KPIs of interest.

III. OPTIMIZATION PROBLEM FORMULATION AND
DD-OEC FRAMEWORK

In this Section, we present the optimization objective function
and introduce the proposed framework for data-driven optimiza-
tion and error compensation (DD-OEC).

A. Optimization Problem Formulation and Algorithm

As mentioned earlier, our focus in this study is to enhance
both the ASE and EE. Since these two KPIs exhibit a certain
degree of trade-off, we develop a multi-objective optimization
function for the data-driven optimization process. The objective
function is formulated as the weighted sum of the normalized
KPIs, which is specifically defined as,

fobj(θse, ηee) = αse
θse
θmax
se

+ (1− αse)
ηee
ηmax
ee

, (3)

where αse and 1 − αse are the weight factors for ASE and
EE, respectively. These KPIs are functions of the COPs; DBS
density, Szone radius, and transmit power. Since maximizing
both ASE and EE is our goal, the joint optimization problem
can be expressed as follows,

max
λdbs, Rsz, Ptx

fobj(θse, ηee),

s.t. 0 ≤ λmin
dbs ≤ λdbs ≤ λmax

dbs ,

0 ≤ Rmin
sz ≤ Rsz ≤ Rmax

sz ,

0 ≤ Pmin
tx ≤ Ptx ≤ Pmax

tx .

(4)

where, λmin
dbs and λmax

dbs denote the minimum and maximum
value of DBS density, Rmin

sz and Rmax
sz denote the minimum and

maximum value of Szone radius, and Rmin
sz and Rmax

sz denote
the minimum and maximum value of Szone radius, respectively.
These minimum and maximum values are selected based on
domain knowledge along with trial and testing in the simulator
and are mentioned in Table II. The optimization problem in
(4) is non-convex, and therefore, we resort to meta-heuristic
algorithms, Simulated Annealing, and Genetic Algorithm, for
finding the optimal solution [4], [17].

Simulated annealing (SA) involves several parameters that
specify its annealing schedules, such as the initial temperature,
cooling schedule, number of iterations, and stopping criteria.



The values of these parameters should be chosen such that
the objective function is sampled across the entire solution
space. Following the discussion in [17], we select an adaptive
temperature schedule that adjusts the rate of cooling based on
the previous runs i.e. Tk+1 = Tk

1+(ln(1+δ)3σTk)
where, σ is the

standard deviation of the objective function and δ is a small
real number. Genetic algorithm (GA), on the contrary, relies on
bio-evolutionary operations like mutation, crossover, and natural
selection to direct the random search into a better solution space
and eventually achieve the best solution [4].

B. Synthetic Data Generation

To achieve data-driven optimization, the initial step is to
train an ML model to learn the relationship between the
COPs and network KPIs using data gathered from the network.
Subsequently, this ML model is utilized in conjunction with
the OE to determine the optimal COP values. To obtain the
necessary data, we generate synthetic COP-KPI data using UC-
SyntheticNET, a module of the 3GPP compliant system level
simulator to model user-centric networks [18]. The simulator
considers spatial correlations, as well as mobility, to generate
realistic COP-KPI data. We enhance the simulator module by
incorporating errors in the positions of UEs and DBSs and
simulating their resulting effects on relevant KPIs. This enables
the simulator to generate both ideal and erroneous databases.

Since ideal data is unavailable at runtime in real networks,
it cannot be used for model training in the proposed DD-OEC
framework. Instead, the ideal data is considered as historical
data, which was obtained in the past through measurement
data collection campaigns, such as drive tests. The DD-OEC
framework incorporates this data for residual computation to
enhance optimization performance. Furthermore, it is also used
as a benchmark for performance comparison.

Table I: AutoML-based Model Fitting Module Performance:
Regression models; GB: Gradient Boosting, LG: Light GBM,
RF: Random Forest, CB: Catboost, AB: Adaboost.

AutoML Model Name RMSE Performance
Case
Flag

1st
Model

2nd
Model

3rd
Model

1st
Model

2nd
Model

3rd
Model

ASE Model-E GBR LGR RFR 3.71E-5 3.78E-5 3.99E-5
EE Model-E GBR LGR CBR 2.02E-5 2.06E-5 2.14E-5

ASE Model-R ABR LGR CBR 1.02E-5 2.17E-5 2.34E-5
EE Model-R LGR ABR CBR 2.17E-5 2.46E-5 2.12E-5

C. DD-OEC Framework

The block diagram of the proposed ML-aided DD-OEC op-
timization framework for data-driven optimization is shown in
Fig. 1b. The selected optimization algorithm and data generation
methodology in the DD-OEC framework have been previously
discussed. Next, we discuss the remaining components, their
interconnections, and their reasoning. The DD-OEC framework
trains two ML models. The first ML model called Model-E, is
trained on the erroneous data available at runtime in networks
to learn the COP-KPI relation. The COP-KPI relation learned
by this model is inaccurate and sub-optimal due to positioning
errors. To address this issue, a second ML model, named Model-
R, is trained to learn the residual error for each input COP.

The residual signal is the difference in KPI values for the
erroneous and ideal historical data. The output of both models
is combined during optimization to compensate for the posi-
tioning error and output the COPs, which maximize the desired
network KPIs. The residual learning approach is particularly
advantageous when dealing with complex relationships between
input and output data. Rather than attempting to directly predict
the complex, non-linear output, residual learning focuses on
learning the residual, which has a limited variation. Training on
data with low variance makes the training process more efficient
and effective. Furthermore, the impact of noise or errors in the
data can be mitigated, which is needed in our scenario [19].

Since, the main focus of this work is on optimization and
error compensation, and not on the ML model fitting, we resort
to the off-the-shelf AutoML library, PyCaret, which provides
robust regression models for the given data. The ML model
fitting problem quite similar to a typical regression problem
with three features (DBS density, Szone radius, and transmit
power) and two target variables (ASE and EE), and we dedicate
a separate model for each target variable. All the standard
pre and post-processing steps, like the feature scaling, K-fold
cross-validation, and hyper-parameters optimization, are carried
out within PyCaret. In addition, PyCaret can identify the best-
performing models among the diverse models that are simulta-
neously trained. The best-performing models, both Model-E and
Model-R, in terms of root mean square error (RMSE) are given
in Table I. The results in Table I show that the family of boosting
models with their typical hyperparameter values predefined in
PyCaret is best suited for the problem under consideration.
Specifically, the gradient boosting regressor (GBR) remains the
best model with the minimum RMSE values. Moreover, com-
pared to the neural networks these models are faster and requires
relatively less data for training. The final key component of
the proposed framework is the OE, which employs two widely
utilized heuristic optimization algorithms, GA and SA. In the
proposed framework, Model-R output is added with Model-E
output within the fitness evaluation functions, of both SA and
GA algorithms, for obtaining the COPs which maximize (3).

Table II: Parameters for database generations and simulations.

Parameter Name Value
DBS Density (λdbs) 0.0005–0.0125
Transmit Power (Ptx) 15–30 dBm
Szone Radius (Rsz) 10–50 m
UEs and DBS deployment Poisson Point Process
Positioning Error Distribution Uniform
Shadowing Standard Deviation 4
User Density(λue) 0.0005
Network Area 1km sq
Bin Size 10
Simulation Size 100 cycles
Error Radii 15 m
Population Size 24
Initial Temperature, δ, σ 250, 0.0001, 0.01

IV. NUMERICAL SIMULATIONS & PERFORMANCE
EVALUATION

The performance of the proposed DD-OEC framework is
analyzed through numerical simulations. To illustrate the benefit
of learning the residual and performing error compensation,
the performance of the DD-OEC framework is compared with
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Fig. 2: Performance of the DD-OEC framework with the optimization techniques of SA and GA for αse = 0.5.

a baseline optimization framework, which does not process
the residual and optimizes based on the model solely trained
on erroneous data. The performance is evaluated in terms of
the achieved objective function values, KPI values, and the
corresponding COP combinations. In addition, the number of
iterations for convergence is also evaluated. We simulate the
user-centric network over a geographic area of 1 km by 1 km.
The values of the relevant parameters for network simulation
and data generation are given in Table II. For data generation,
10 equally spaced values are taken within the ranges specified
in Table II, for each COP parameter. Moreover, as there are
three COP parameters, the length of both erroneous and ideal
databases becomes 103. Finally, the parameters, δ and σ,
describe the initial temperature and rate of cooling for simulated
annealing.

The convergence performance of SA and GA for both DD-
OEC and baseline schemes is shown in Fig. 2a and Fig.
2b, respectively. These performance curves are obtained after
averaging the converged objective function values from 1000
Monte-Carlo trials. The COPs obtained after algorithm conver-
gence are validated on the simulator by giving the converged
COPs as input to the simulator and using the resulting KPIs
to evaluate the objective function in (4). In addition to this,
the converged COPs are validated using an ML-based model of
the simulator trained using the ideal (without error) COP-KPI
combinations. These validated values are plotted as horizontal
lines and represent the maximum values after convergence.
Moreover, the COPs obtained through the baseline scheme are
also validated in each iteration using the ideal model.

It can be observed from Fig. 2a and Fig. 2b that even though
the baseline scheme improves the objective function value with
erroneous data (see blue curve) when these COPs are validated
using the ideal model (red curve) or the simulator, the objective
function value is much lower. This indicates that with erroneous
data, the COPs obtained after optimization are highly sub-
optimal for the actual network. On the contrary, the COPs ob-
tained via the DD-OEC scheme achieve the maximum value of
the objective function when validated using the simulator. These
results reveal that the mechanism of DD-OEC is necessary for
the attainment of a close-to-optimal COP combination, resulting
in a better network operating point.

Moreover, it can be observed that the convergence of GA
differs from SA convergence and is able to converge earlier. SA
shows a rising trend because of a high degree of variability of its
convergence path in each run. Contrary to this, the convergence
path of GA is relatively less varying over multiple runs.
Furthermore, as GA is a population-based algorithm, which
remains fixed in each run, its initialization is not as random as
that of SA, and it reaches the optimum solution in relatively less
time. In addition, the number of generations/iterations required
to reach the optimum solution varies in different runs of the
same algorithm. Hence, to provide more insights, we plot these
results using box plots in Fig. 2c. An important observation
to note here is that the number of required iterations in the
DD-OEC scheme is slightly higher than the baseline scheme
because the DD-OEC scheme needs to combine the effect of
both the Model-E and Model-R; hence it takes more time to
converge.

The simulation results with different values of αse and 1−αse

are summarized and compared in Table III. For both the baseline
and proposed DD-OEC schemes, the achieved objective func-
tion value along with the corresponding EE and ASE values and
the respective COP values, indicated by the triplet [λdbs, Rsz ,
Ptx], are also shown in Table III. Again, it can be noted that
for both SA and GA, the objective function value achieved for
the baseline scheme is lower compared to the objective function
value for the DD-OEC scheme. When the baseline COPs are
validated using the simulator, the objective function value is
lowered further, highlighting the sub-optimality of the solution.
On the contrary, when the optimized COPs from the DD-OEC
framework are validated on the simulator, the utility degradation
is minimal. Compared to the baseline scheme, it can be noted
that with the SA scheme, a gain up to 15% is observed, and
with the GA scheme a gain of up to 23% is achieved. This
highlights the need for the DD-OEC scheme and validates its
effectiveness to counter the impact of errors.

Furthermore, it can be noted that the optimized COPs for
different cases converge to lower values of λdbs and Rsz and
medium values for the transmit power. This is because, for
the lower Szone sizes, relatively more UEs are scheduled,
which increases the ASE. A lower Szone radius results in an
increase in interference, however, this consequence is avoided



Table III: Performance comparison of the DD-OEC framework with the baseline scheme for different weights combinations.

Opt.
Algo.
Name

Weight
Case

(αse, 1− αse)

Baseline Optimization COPs
Validation on

Simulator

DD-OEC Optimization COPs
Validation on

Simulator

Exec.
Time

(s)Objective
Function

Opt. COP Comb.
[λdbs, Rsz , Ptx]

Objective
Function

Opt. COP Comb.
[λdbs, Rsz , Ptx]

SA
(0.25, 0.75) 0.82=(0.21+0.61) [5.17E-4, 13.33, 24.41] 0.77=(0.22+0.55) 0.85=(0.23+0.62) [5.79E-4, 10.95, 18.34] 0.84=(0.23+0.61) 433

(0.50, 0.50) 0.86=(0.45+0.41) [5.74E-4, 11.62, 17.64] 0.78=(0.44+0.34) 0.87=(0.45+0.42) [6.24E-4, 10.05, 20.64] 0.87=(0.45+0.42) 406

(0.75, 0.25) 0.84=(0.61+0.23) [5.16E-4, 12.94, 23.31] 0.79=(0.61+0.18) 0.92=(0.72+0.20) [5.68E-4, 10.70, 16.35] 0.91=(0.71+0.20) 443

GA
(0.25, 0.75) 0.88=(0.19+0.69) [5.05E-4, 12.26, 17.23] 0.72=(0.16+0.56) 0.89=(0.18+0.71) [5.89E-4, 11.23, 20.36] 0.89=(0.18+0.71) 313

(0.50, 0.50) 0.94=(0.46+0.48) [5.50E-4, 11.63, 15.25] 0.92=(0.48+0.44) 0.98=(0.49+0.49) [5.35E-4, 10.16, 15.00] 0.96=(0.49+0.47) 306

(0.75, 0.25) 0.88=(0.69+0.19) [5.20E-4, 13.24, 23.31] 0.81=(0.62+0.19) 0.87=(0.72+0.15) [5.75E-4, 11.07, 18.85] 0.86=(0.72+0.14) 316

by reducing the transmit power. The lower value of the DBS
density is due to the limited UE density and this lower DBS
density is sufficient to serve the limited UE density. Comparing
the different values of αse, it can be noted that the maximum
objective function value is obtained when both ASE and EE
are given equal weight as both components are normalized.
Finally, comparing GA and SA reveals that the former, with
its population-based solution-finding approach, can efficiently
reach convergence, and the converged objective function values
are also higher. Hence, for this problem, GA is the better choice.

V. CONCLUSION

The errors in UE and DBS positions impact the performance
of user-centric networks. In particular, the performance of the
data-driven optimization solutions becomes sub-optimal when
utilizing the data generated from the UEs with erroneous posi-
tions. This paper proposes a data-driven framework to minimize
the adverse impact of UE and DBS positioning errors on the
performance of the user-centric network. The framework relies
on an error residual model trained on historical data, which can
be collected from a drive test campaign. Data-driven models
from AutoML are trained on the current erroneous data to learn
the impact of parameters on spectral and energy efficiency. A
multi-objective optimization problem of joint maximization of
spectral and energy efficiency was formulated. We then utilize
the current erroneous model and the historical residual model
in the OE to predict the optimum COPs. Results indicate that
the proposed DD-OEC method produces better convergence
compared to the baseline optimization method.
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