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Abstract—Mobile data traffic grew by 74% in 2015 and it
is expected to grow eight-fold by 2020. Future wireless net-
works will need to deploy massive number of small cells to
cope with this increasing demand. Dense deployment of small
cells will require advanced interference mitigation techniques to
improve spectral efficiency and enhance much needed capacity.
Coordinated multi-point (CoMP) is a key feature for mitigating
inter-cell interference, improve throughput and cell edge perfor-
mance. However, cooperation will need to be limited to few cells
only due to additional overhead required by CoMP due to chan-
nel state information (CSI) exchange, scheduling complexity, and
additional backhaul limitation. Hence, small CoMP clusters will
need to be formed in the network. This paper surveys the state-
of-the-art on one of the key challenges of CoMP implementation:
CoMP clustering. As a starting point, we present the need for
CoMP, the clustering challenge for 5G wireless networks and pro-
vide a brief essential background about CoMP and the enabling
network architectures. We then provide the key framework for
CoMP clustering and introduce self organization as an important
concept for effective CoMP clustering to maximize CoMP gains.
Next, we present two novel taxonomies on existing CoMP clus-
tering solutions, based on self organization and aimed objective
function. Strengths and weaknesses of the available clustering
solutions in the literature are critically discussed. We then dis-
cuss future research areas and potential approaches for CoMP
clustering. We present a future outlook on the utilization of big
data in cellular context to support proactive CoMP clustering
based on prediction modeling. Finally, we conclude this paper
with a summary of lessons learned in this field. This paper aims
to be a key guide for anyone who wants to research on CoMP
clustering for future wireless networks.

Index Terms—Coordinated multi-point, CoMP clustering, 5G.

I. INTRODUCTION

FUTURE wireless cellular networks will be under tremen-
dous pressure with the increasing data demand as the user

behaviour changes with popular high bandwidth applications.
While smart phones become very popular, high bandwidth
hungry applications like video streaming, multimedia file shar-
ing etc becomes more popular. Mobile data traffic grew by
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Fig. 1. Proposed Capacity Enhancements for 5G.

74% in 2015 and it’s expected to grow 8-fold by 2020 [1].
Moreover, a 1000 fold increase in mobile data traffic is
expected for 5G beyond 2020 [2]. To enable 5G to cope
with this tremendous increase in data growth, following three
development areas in the emerging wireless landscape are
proposed [2]–[4].

1) Network Densification - Massive Small cell deployment
2) Increased Spectral Efficiency - CoMP, Multiple Input-

Multiple Output (MIMO), Enhanced coding techniques
3) Additional Spectrum
Figure 1 illustrates the potential capacity gains expected

from each of the three key capacity enhancement proposed
for 5G [2]–[4]. Biggest capacity gains are expected from net-
work densification: a massive deployment of small cells will be
required [5], [6] in search for additional capacity. Dense small
cell deployment in heterogeneous cellular networks (HetNet)
will lead to a severely interference limited network depending
on the available frequency spectrum. More advanced inter-cell
interference mitigation techniques will need to be deployed to
combat interference and improve spectral efficiency. Improved
spectral efficiency will lead to much needed capacity enhance-
ment as highlighted above as one of the three key development
areas for 5G.

CoMP or Network MIMO is the emerging technology which
has been proposed to reduce inter-cell interference and hence
improve high data rate coverage and cell edge throughout
for future wireless networks. CoMP has been introduced for
long term evolution advanced (LTE-A) by the third gener-
ation partnership project (3GPP) in Release 11 [7] and it
is likely to be a key feature of 5G [2]. However, coordina-
tion between all cells in the network is a very complex task,
due to precise synchronisation requirement within coordinated
cells, additional pilot overhead, additional signal processing,
complex beamforming design and scheduling among all base
stations (BSs). It will require high bandwidth backhaul links
due to CSI and/or user data exchange between all BSs [8], [9].
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To reduce this overhead, smaller size cooperation clusters are
required where coordination only takes place within the clus-
ter. Optimal CoMP clustering is one of the key challenges for
CoMP implementation for future wireless networks. Selecting
the right group of BSs for cooperation for a given user profile
is key to maximise potential CoMP gains. Trade-off between
the overhead and interference cancellation benefits needs to
be taken into account for optimum cluster size design. There
are multiple objectives for CoMP clustering and the right bal-
ance between the various efficiency/overhead indicators is a
challenge. For example, maximising spectral efficiency with
CoMP clustering can degrade energy efficiency and backhaul
limitations may prevent such cluster design. Hence a compre-
hensive clustering approach should be considered to achieve
the right balance between multiple objectives of future net-
works such as energy efficiency, load balancing and spectral
efficiency. Main scope of this article is to provide an extensive
survey of CoMP clustering techniques in the literature over the
last decade. We provide a novel taxonomy on CoMP clustering
techniques, critically discuss the strengths and weaknesses of
the available solutions in the literature. The rest of the article
is structured as follows.

In Section II, we review the relevant work on CoMP clus-
tering and show our novel contribution with this survey. In
Section III, we provide an essential background about CoMP
to the reader, main types of CoMP implementation, associ-
ated challenges and the enabling network architectures are
presented. In Section IV, we introduce a key framework for
CoMP clustering challenge and present self organising net-
works (SON) as a important platform to implement effective
dynamic CoMP clustering algorithms. In Section V, a novel
self-organisation based taxonomy on CoMP clustering in the
literature is introduced. Various CoMP clustering approaches
are discussed and criticised based on self organisation, com-
plexity, scalability and practical use. In Section VI, a further
taxonomy is introduced based on the aimed objective func-
tion of CoMP clustering. An extensive survey of existing
clustering approaches based on different objective functions
like spectral efficiency, energy efficiency, load balancing and
backhaul optimisation are presented and criticised in detail. In
Section VII, we discuss open research areas for CoMP clus-
tering and present potential approaches. Big Data empowered
prediction based CoMP clustering is identified as an impor-
tant open research area for much needed low latency in future
wireless networks. Big Data aided spatio-temporal channel
prediction, user mobility and user profile predictions and their
potential use in proactive CoMP cluster decision making is
detailed. Furthermore, we present future research directions
on dynamic clustering and identify the need for comprehen-
sive multi-objective CoMP clustering in this section. Finally
in Section VIII, we conclude with summary of lessons learnt
in CoMP clustering. The list of acronyms used in this paper
is listed in Table I.

II. RELATED WORK

A number of works have already been conducted for CoMP
in general [5], [8], [10] and more specifically for LTE-A

TABLE I
LIST OF ACRONYMS

implementation in [9] and [11] . Deployment scenarios and
brief clustering reviews are presented in these works, how-
ever there is no study in literature that extensively surveys
clustering challenge for CoMP. In [5], CoMP clustering is
reviewed briefly and a subset of static overlapping clusters
are presented, however this work lacks a comprehensive sur-
vey on all clustering models in literature, especially missing
the advanced clustering techniques, i.e., dynamic and/or multi-
objective based clustering. CoMP concept and trial results
are presented in [8] with a dynamic clustering algorithm tri-
alled in a test network, however the paper again lacks a
review of other available clustering models. Lee et al. [9]
discuss CoMP implementation challanges and various deploy-
ment scenarios for LTE-A, however clustering challenge is not
exploited in the paper. Backhaul capacity and latency require-
ment for different CoMP schemes are investigated in [12].
A user-centric CoMP clustering approach is studied to inves-
tigate available backhaul capacity/latency impact on CoMP
clustering. Wireless cluster feasibility is presented for differ-
ent cluster size and backhaul capacity. However the paper
lacks on an extensive review of other available CoMP cluster-
ing algorithms which can be employed to dynamically adapt
to available backhaul capacity. Beylerian and Ohtsuki [13]
presents a service-aware resource allocation for non-coherent
joint transmission (JT) CoMP in cloud radio access net-
works (C-RAN) architecture where a static and a user-centric
clustering approach is presented. Beylerian and Ohtsuki [14]
propose a further resource allocation solution combining
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non-orthogonal multiple access (NOMA) scheme with CoMP
to exploit power and space domain multiplexing and further
improve capacity. A static clustering of a fixed cluster size of 2
is employed in this work, however both studies does not intend
to cover all clustering solutions available, especially missing
the dynamic clustering algorithms which can reduce high com-
plexity on user-centric clustering solution in large clusters of
cells. Rao and Fapojuwo [15] presents a survey on energy
efficient resource management for cooperative networks how-
ever energy efficient cooperative clustering challenge is not
reviewed extensively. A comprehensive book is published
about CoMP [10], two example clustering techniques, one
for static, one for dynamic clustering is presented however it
again fails to present an extensive review for CoMP clustering.
Coalitional game theory is introduced in [16] as an important
analytical tool to form CoMP clusters. An example clustering
algorithm is also presented for user equipment (UE) clustering
in the uplink, maximising the sum-rate capacity. Nonetheless,
the book fails to provide a review of all CoMP clustering
approaches available. An extensive survey is provided on con-
trol and data plane separation architecture (CDSA) for future
networks in [17], however this survey lacks a review on CoMP
within the CDSA architecture. Mustafa et al. [18] provides a
survey on device to device (D2D) CoMP within the CDSA
architecture and discuss CoMP clustering briefly with one
dynamic clustering example. Both papers [17] and [18] lack
a wider review of all CoMP clustering solutions available in
literature. In [19], an extensive review for self organising net-
works (SON) is provided, however CoMP clustering is not
discussed in relation to SON framework. To the best of our
knowledge, there is no comprehensive survey in the litera-
ture about CoMP clustering. This paper aims to fill this gap,
providing an extensive survey on the existing CoMP cluster-
ing approaches in literature. Two novel taxonomies on CoMP
clustering based on aimed objective and self organisation are
presented. Strengths and weaknesses of available solutions are
critically reviewed and future research directions are identified.

III. COMP - ESSENTIAL BACKGROUND

In this section, we provide an essential background of CoMP
to the reader before moving to the main scope of this article,
i.e., CoMP clustering.

Network coordination deals with inter-cell interference,
reducing the interference especially at the cell edge, resulting
in much needed additional capacity and increased UE through-
put. By making use of the shared data between coordinating
transmission points (CSI/scheduling/user data etc), inter-cell
interference can be mitigated or even exploited as meaningful
signal at the receiver. Transmission points (TP) are different
antenna ports of MIMO enabled cells which may or may not
be located at the same place.

CoMP is one of the key features, standardized for LTE-
Advanced to uplift the network performance. 3GPP initiated a
study item on LTE-Advanced in March 2008 and the require-
ments for radio interface enhancements are published in [20].
To satisfy these requirements, 3GPP published the physical
layer enhancements in [21] where CoMP has been identified as

Fig. 2. Main Downlink CoMP Types for LTE-A [7].

one of the key features. A further feasibility study for CoMP in
LTE-A is undertaken by 3GPP in Release 11 [7], where phys-
ical layer aspects of CoMP is studied. Simulation results from
various sources are presented in this study where it is shown
that CoMP can offer a significant performance improvement
especially at the cell edge for different network deployment
scenarios [7].

Lee et al. [9] show that more CoMP gains are achievable for
cell edge users in scenarios where more interference is experi-
enced. Similarly, more CoMP gains are presented for HetNet
scenario where pico cells experience severe interference from
macro sites.

Various levels of coordination schemes are studied in [10]
but three main downlink coordination categories are identified
by 3GPP for LTE-Advanced [7] based on the required back-
haul capacity and scheduling complexity. An illustration of
downlink CoMP types is given in Figure 2.

1) Joint Transmission (JT): CSI/Scheduling information
and also user data is shared between the coordinated
TPs. This type of coordination offers better results,
however it requires high backhaul bandwidth with low
latency due to user data exchange between multiple TPs.
Multiple TPs can serve to single user either coherently or
non-coherently, converting interference signal to useful
signal. Coherent transmission refers to joint precoding
design and synchronised transmission to achieve coher-
ent combining. Non-coherent JT does not require joint
precoding, user data is received from multiple TPs where
data is individually precoded from each cell.
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2) Dynamic Point Selection (DPS): This is a special type of
JT where user data is transmitted from one TP only and
serving TP is changed dynamically in each subframe
based on resource availability and channel conditions.
Fading conditions are exploited to select the best serving
cell at each subframe. User data is available at multiple
TPs similar to JT.

3) Coordinated Scheduling/Beamforming (CS/CB): CSI is
shared but user data is not shared among the coop-
erated TPs so user data is only available at one TP
but scheduling and beamforming design is coordinated
between the TPs. Beamforming vectors are selected such
that interfering TPs is steered towards the null space
of the interfered user to minimise interference. CS/CB
require lower backhaul bandwidth when compared to JT
due to reduced data exchange.

There are two main uplink CoMP transmission categories
identified by 3GPP in [7].

1) Coordinated Scheduling/Beamforming (CS/CB): User
scheduling and precoding design is done by coordina-
tion between the TPs however user data is only received
by one TP.

2) Joint Reception: User data is received by multiple TPs
jointly. Similar to downlink JT, uplink joint recep-
tion offers higher gains but with the cost of increased
complexity and higher backhaul bandwidth requirement.

A. Enabling Technologies for CoMP

The requirement for network densification for future cellular
networks has initiated research on a number of new network
architectures to optimise increased energy consumption, sig-
nalling and complex mobility management etc. These recently
emerging radio access network (RAN) architectures will also
help to overcome the challenges for CoMP (i.e., backhaul lim-
itation, complex precoding, signalling etc), enabling CoMP to
be one of the main features of future wireless networks.

• Control/Data Plane Separation Architecture (CDSA):
Motivated by proposed dense HetNet deployment and
energy efficiency concerns, a control and data plane sep-
aration architecture (CDSA) is proposed for macro BSs
to provide coverage layer and handle most of the control
signalling and small cell (SC) layer under the macro BS
to provide the required data services. Reader is referred
to [17] and [18] for two recent extensive surveys for fur-
ther reading on CDSA. CDSA is one of key enablers of
CoMP implementation where macro BSs can be enhanced
to function as CoMP control unit (CCU) with strong
backhaul links to the SCs within its coverage area. CCU
functionality on the macro cell can handle central precod-
ing design, baseband processing and can make intelligent
clustering decisions centrally within the SC layer, taking
various efficiency metrics into account, i.e., energy effi-
ciency, load balancing, spectral efficiency etc. With all
SCs connected to the associated macro BS, there is no
need for high bandwith backhaul between the small cells
in CDSA.

• Cloud Radio Access Networks (C-RAN): Another archi-
tecture envisioned for network densification is C-RAN
where baseband processing unit (BBU) is decoupled from
remote radio unit (RRU). A pool BBU is proposed in the
cloud where there is high bandwith front-haul between
the cloud and RRUs [22]–[24]. Baseband resource shar-
ing can be maximised and CoMP can easily be realised in
this architecture. Cloud can be enhanced to handle CCU
function and make intelligent clustering decisions for the
connected RRUs. A BBU+RRU based CoMP example
has been studied in [25] for LTE-A giving promising
spectral efficiency gains as expected. The downside of
C-RAN is the requirement for high bandwidth fronthaul.
Larger CoMP cluster size in C-RAN can be feasible with
ideal fronthaul [26] due to centralised BBUs handling
main CoMP functions. Concept of self organising cloud
cells is proposed in [27] where SCs within the coverage
area of a macro BS are connected to the macro BS. Macro
BS then handles the decision making on which SCs to
be allocated for user data service to improve blocking
probability, energy consumption and handover probabil-
ity. This setup can also be easily extended to enable
CoMP and enhance macro BS to handle CoMP-CCU
functionality.

IV. COMP CLUSTERING AND SON

In this section, we first discuss the key challenges
in CoMP clustering design and identify the need for dynamic
CoMP clustering for maximising CoMP gains by adapting
CoMP clustering to changing network and user profile con-
ditions. We then propose SON as the key enabler for dynamic
CoMP clustering and give brief introduction on SON.

A. CoMP Clustering Challanges and SON

As discussed earlier, CoMP can only be realised within
small cluster of cells due to its complexity which gen-
erally increases with the number of coordinating cells.
Optimum cooperating cluster selection is key for max-
imising the benefits of CoMP. An illustration of CoMP
clustering in a typical CDSA architecture is provided
in Figure 3.

A number of challenges need to be critically evaluated for
a comprehensive CoMP clustering approach to maximise the
benefits of CoMP:

• Is it efficient to deploy CoMP? The first question which
need to be answered is, if it’s worth deploying CoMP
for individual cells in a given network setup. Would the
overheads for deploying CoMP be more than the gains
it provides? As illustrated in Figure 3, cells closer to
each other need to form clusters for cooperation as the
CoMP gains would be maximised when there is severe
inter-cell interference which can be mitigated. However,
isolated cells may need to work without coordination,
based on the limited amount of inter-cell interference
experienced from other cells. In addition, users close to
the cell center may not experience high inter-cell inter-
ference, however cell edge users will suffer from high
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Fig. 3. Dynamic Multi-Objective CoMP Clustering illustration in CDSA
Architecture.

interference hence, it can be more efficient to deploy
CoMP for cell edge users only. Garcia et al. [28] pre-
sented a dynamic clustering scheme and suggested no
spectral efficiency gain in employing CoMP in high
signal-to-interference-plus-noise ratio (SINR) region due
to additional pilot signalling required for CoMP, reducing
spectral efficiency more than the expected gains. Users
are allocated CoMP clusters or CoMP is not used based
on their SINR from the local serving BS. It’s shown that
CoMP gains are maximised when received power levels
from coordinating cells are close to the received power
levels of the local serving cell. Hence it can be con-
cluded that CoMP gains vary with network density and
CoMP may not need to be deployed for some cells based
on their location, user profile and the amount inter-cell
interference.

• How many cells in the cluster? Cluster size is another
key parameter for optimal CoMP clustering. Too small
clusters will fail to provide full achievable gains from
CoMP, on the other hand, big cluster size will lead to
increased overhead on CSI feedback and backhaul capac-
ity [29]. Increased cluster size will give better weighted
sum rate [30] but with the cost of additional signal pro-
cessing and increased feedback and signalling. Moreover,
increased cluster size can lead to energy inefficiency
in terms of achieved bits/joule [31]. As illustrated in
Figure 3 for an example CDSA architecture, some clus-
ters will have 6 cells, others will have 5 or 4 and some
others will reduce cluster size by switching off some cells
within the cluster for energy efficiency. Hence, there is no
ideal fixed cluster size, instead, cluster size needs to be
a dynamic parameter in the clustering algorithm which
needs to change based on channel conditions and user
profile.

• Which cells to switch off for energy efficiency? As illus-
trated in Figure 3, some cells can be switched off by
forming intelligent CoMP clusters to enhance SINR and
make sure minimum SINR is provided while some cells
are switched off for energy efficiency. A number of

network objectives will need to be considered for BS
switch-off:

– Can the remaining capacity in the cooperating cluster
cope with the traffic demand for a given quality of
service (QoS)?

– Is SINR provided by the cooperating cluster without
the sleeping cell over the minimum threshold?

– Do the cells within the cooperated set have enough
backhaul bandwidth to cope with increased traffic
when a cell is switched off for energy efficiency?

• Load Balancing / RAN Capacity/ Backhaul bandwidth:
Cooperation introduce additional capacity in the network
by improving spectral efficiency [8]. Intelligent clustering
algorithms can be employed to support load balancing by
shifting traffic from highly loaded cells to its neighbour-
ing clusters. Increased cluster size can also uplift capacity
in hotspot areas based on network topology. However,
backhaul bandwidth requirement will also increase with
increased cluster size. Hence multiple objectives need to
be considered for intelligent CoMP clustering.

Given the challenges for CoMP clustering design as discussed
above, static clustering based on a fixed topology will fail
to give expected gains for future networks as the network
topology will be dynamically changing with on/off sleep-
ing cells, user deployed cells with unknown location etc.
Moreover, spatio-temporal distribution of users and service
demands dynamically changes. To maximise CoMP gains,
clustering algorithms need to be able to accurately respond
to these dynamically changing network conditions and user
profiles. Self organised CoMP clustering algorithms can be
developed to make optimum clustering decisions by reading
various network data and making clustering decisions based on
the changing conditions, maximising the objectives like spec-
tral efficiency, energy efficiency, load balancing while keeping
the fairness between the users.

Dynamic clustering can be implemented in the SON plat-
form which employs autonomous closed-loop changes in the
network dynamically. Big Data available from various sources
within the cellular network can be exploited as an input for
SON platform for proactive CoMP clustering algorithms and
other SON functionalities. Accurate prediction of user profiles
and mobility based on Big Data can be employed within the
SON platform for much needed lower latency on CoMP clus-
tering design. Use of Big Data for proactive CoMP clustering
is further discussed in Section VII-A. A brief background for
SON is given in the next subsection.

B. Self Organising Networks (SON)

SON is an emerging concept in wireless cellular networks
to automate some of the operational tasks in closed loop to
overcome the challenges of a complex multi-layer network.
Network conditions are monitored dynamically by exploit-
ing Big Data from various sources and intelligent algorithms
are employed to effectively manage the network based on
the changing local conditions. Dynamic CoMP clustering can
also deployed within the SON platform as an enhancement to
other SON modules which utilises the Big Data for making
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proactive CoMP clustering decisions. SON algorithms can be
designed as a distributed or centralised function depending
on the requirements of the tasks, especially time and scal-
ability limitations. Given the increasing complexity of the
wireless cellular networks, SON will have a strong, enhanced
presence in future networks. Future networks will need to
deploy effective SON algorithms to improve capacity and
QoS and reduce capital expenditure (CAPEX) and operational
expenditure (OPEX) by reducing labour costs.

SON has been an important part of 3GPP LTE/LTE-
Advanced standardization which has started with Release 8
and enhanced further with most recent Release 12 [32]. An
extensive survey on SON has been presented in [19].

SON is mainly categorised in three folds:
1) Self Configuration: This group of SON modules aim

to manage new entities integrated in the network. A
considerable amount of OPEX cost is spent for new
site configuration during network rollout and it will
increase with proposed massive deployment of small
cells. Self configuration algorithms aim to automate new
site configuration, initial automated neighbour relations
and software updates [33].

2) Self Optimisation: This group of SON modules aim to
optimise ongoing services in the network. Self opti-
misation algorithms will monitor network performance
data and derive optimisation changes in the network
in open and/or closed loop, aiming to reduce OPEX
costs and also improve network spectral efficiency,
energy efficiency, network capacity and overall QoS.
Dynamic CoMP clustering can be incorporated to Self
Optimisation module set and implement closed-loop
dynamic clustering decisions based on network data
already available in the SON platform. Self optimisa-
tion is an important part of LTE/LTE-Advanced stan-
dardisation [34] and there are already commercialised
algorithms deployed in the current LTE networks. Self
optimisation tasks can be mainly grouped in three
folds [19].

a) Load balancing
b) Coverage and Capacity Improvement
c) Interference Control

3) Self Healing: This group of algorithms aim to detect
faults in network elements, analyse the fault by gathering
relevant information, diagnose and clear the fault. For
time consuming fault restoration, self healing also aims
to perform compensation actions on neighbour cells until
the faulty cell is restored. 3GPP has standardised self
healing for LTE/LTE-Advanced as an important feature
of SON platform [35].

V. CLUSTERING TAXONOMY BASED

ON SELF ORGANISATION

In this section, CoMP clustering algorithms in literature are
critically discussed based on self organisation. Three main
clustering types are identified:

1) Static Clustering
2) Semi-Dynamic Clustering
3) Dynamic Clustering

Fig. 4. CoMP Clustering Taxonomy based on Self Organisation.

A summary of clustering taxonomy based on self organisation
is given in Figure 4.

Static clustering method is less complex with less signalling
overhead but this method is not responsive to changes in
the network nodes or user locations, hence the performance
gains are limited. Semi-dynamic clustering is an enhanced
version of static clustering where a number of static clusters
are formed and employed dynamically to improve the poten-
tial gains. Complexity increases with additional signalling but
performance is also improved when compared to static clus-
tering. However, this method still lacks on truly responding
to the dynamic changes in the network. Dynamic clustering
methods are developed to respond to network and user mobil-
ity changes, i.e., new sites, sleeping cells, load changes etc.
This scheme comes with increased complexity on scheduling
and beamforming design but it gives the best results, reducing
inter-cluster interference by moving the clusters dynamically.
Dynamic clustering can be classified in three main categories
within itself based on the approach. In network-centric clus-
tering approach, all users in the same cluster use the same
set of cells, however in user-centric clustering, users can be
assigned their own clusters which comes with additional com-
plexity. Hybrid approach combines both approaches which can
be a good balance of complexity vs. performance.

In the subsequent subsections, we present an extensive
literature review for each category and criticise available tech-
niques based on complexity, scalability and potential spectral
efficiency gains.

A. Static Clustering

CoMP coordination clusters are formed in a static way,
mostly based on topology and don’t change according to
changes in the network. This method offers a less complex
solution which can be a good candidate to deploy in the initial
phase of LTE-A deployment. Static clustering within cells in
the co-located site is the most basic and practical option which
does not require data exchange between the sites, hence not
reliant on fast backhaul.

The work presented in [36] propose a static clustering
scheme, where sectors looking into each other are clustered to
improve SINR. Authors assume a hexagonal grid in deploy-
ment which is non-realistic in real network deployments. This
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is usually the downside for most static clustering solutions.
In [37], static intra-site and inter-site CoMP clustering is
considered with orthogonal frequency reuse where antenna
bore-sights are shifted to face into each other for extra CoMP
gain. Dead-spots would be created with this new topology
where small cells are proposed to fill in the dead-spots. CoMP
and HetNet deployment are merged in this solution to iden-
tify locations for small cell deployment, however an idealistic
hexagonal grid is assumed again, which is unrealistic. A
disjoint and overlapped static clustering model is presented
in [29] where static clusters are formed to maximise mean
SINR or to minimise SINR outage at possible user loca-
tions. In the overlapped solution, one cell can be in three
clusters where system resources are splitted into each of the
three clusters. Presented solution is better than the clustering
types based on regular patterns as it can apply to realistic net-
work topology. However the proposed work is not scalable as
the complexity of the solution increases with the number of
possible user locations.

A number of drawbacks for CoMP clustering have been
investigated in [38]. Authors have investigated an inter-cell
interference model in HetNet scenario with pico-cells to
offload macro network. Time-domain resource partitioning is
considered between the macro BS and pico layer within the
macro BS’s coverage area. A static CB-CoMP method is
applied with centralised beamforming and scheduling for the
cluster of all pico-cells and its connected macro cell. CoMP
failed to improve the performance further from enhanced inter-
cell interference coordination (eICIC) due to the additional
overhead required to implement CoMP, i.e., mainly the UE-
RS signal introduced with CoMP in LTE-Advanced. In [39],
time synchronisation limitation between coordinated cells is
investigated. Authors have shown that time synchronisation
will need to be taken into account for a network with large
inter-site distance (7km studied), however there is minimal
inter-symbol interference (ISI) issues for inter-site distance of
< 1 km due to cyclic prefix (CP) length.

In summary, static clustering is an attractive approach with
its significantly less complexity for initial CoMP deployment
for LTE-A networks. Intra-BS CoMP is a promising solu-
tion which eliminates the need for high backhaul bandwidth
requirement between the BSs. On the other hand, inter-BS
static clustering algorithms are mostly based on the assump-
tion of hexagonal grid layout, which is not applicable to real
networks. Furthermore, this method will fail to give the much
needed spectral efficiency gains and increased system capacity
for future 5G networks. Semi-dynamic and/or fully dynamic
solutions are required to respond to changing network/user
profile conditions and maximise CoMP gains.

B. Semi-Dynamic Clustering

Semi-dynamic clusters are more advanced than static clus-
ters where several layers of static clusters are designed to
avoid inter-cluster interference. More than one static clustering
patterns are formed where users are able to select the most suit-
able cluster. This method also mostly relies on hexagonal grid
network topology which is unrealistic in practical networks.

A two layer static clustering, based on regular network
topology is proposed in [40] to extend on static clustering.
This approach is then extended for several layers for dynamic
clustering. It’s proposed for users to pick one of the available
clusters based on power. While the solution is an improved
algorithm compared to static clustering, overlapping nature of
the proposed algorithm adds to the scheduling complexity and
require increased backhaul bandwidth. A semi-dynamic clus-
tering scheme is introduced in [41] where static clusters are
formed based on hexagonal grid topology and multiple shifted
cluster patterns are created with different sub-channels allo-
cated for each shifted cluster. A joint, centralised scheduling
is developed for this clustering type. In [42], static cluster shift
idea from [41] is further enhanced with “full shift” and differ-
ent frequency bands are allocated on shifted clusters. Static
clusters are formed to maximise neighbouring cells in the
same cluster for a given hexagonal network layout. Shifted
clusters reduce the inter-cluster interference, maximising the
CoMP gain, however solution is based on hexagonal grid
topology which is not applicable to real networks. In [43],
a semi-dynamic clustering scheme is proposed for downlink
Time Division Duplex (TDD) JT-CoMP scenario. Solution is
based on large size (nine cells) static clustering and creat-
ing different static patterns of sub-clusters in each large static
cluster. Dynamically selecting sub-clusters achieves almost as
good as large cluster spectral efficiency but with reduced com-
plexity. Proposed method is not able to respond to dynamic
changes within the static cluster, i.e., new/sleeping cells etc.
and also static nature of the big clusters will create inter-cluster
interference.

In summary, semi-dynamic clusters are an improved ver-
sion of static clusters with minimal overhead increase, however
most solutions are based on idealistic hexagonal grid topology
which is not realistic. Furthermore, majority of semi-dynamic
algorithms propose orthogonal frequency allocation from each
cell to its assigned static clusters. Based on the utilisation of
dedicated bandwidth for each static cluster, proposed algo-
rithms can reduce the overall spectral efficiency. Moreover,
static nature of clusters is not able to respond fully to the
spatio-temporal changes in user profiles and the network ele-
ments. Dynamic clustering algorithms is discussed in the next
section which is mostly applicable to real network topol-
ogy and can dynamically adopt to changing user profile and
network conditions.

C. Dynamic Clustering

Dynamic CoMP clustering is more complex with increased
signalling overhead but its more responsive to the changes
in the network. Inter-cluster interference can be minimised
and cluster size for individual users can be optimised dynam-
ically for an optimum balance. Dynamic CoMP clustering
can be classified in three groups based on network elements
considered for clustering:

1) Network-Centric Clustering
2) User-Centric Clustering
3) Hybrid Clustering
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Fig. 5. Dynamic CoMP Clustering Taxonomy.

An illustration of the three types of dynamic clustering is
given in Figure 5. CoMP benefits are illustrated for two sam-
ple users for an identical network with different clustering
schemes. For example, user-1 in the figure is located at the
edge of cell-3, receiving strong interference from cell-4 and
cell-11. Network-centric clustering is the most limited scenario
where user-1 is located at the edge of the cluster. Its cluster

consists of cell-3 only and there is interference from cell-4
and cell-11. Hybrid clustering employs larger network-centric
clusters, which improves user-1’s cluster to cell-3 and cell-4.
User-1’s SINR is improved in this clustering type but there is
still interference from cell-11. The most beneficial clustering
scheme is the user-centric one where user-1’s cluster consists
of all three surrounding cells, i.e., cell-3, cell-4 and cell-11.
Although user-centric clustering seem to be most beneficial
one, it comes with additional scheduling/precoding complex-
ity and increased backhaul requirement. The three types of
dynamic clustering are reviewed in detail in the subsequent
subsections.

1) Network-Centric Clustering: In network-centric cluster-
ing approach, cells are clustered in groups where all users
within the serving area of the clustered cells are served by all
cells or a sub-group of cells in the cluster. A simple illustra-
tion of network-centric clustering is given in Figure 5b. It is
less complex when compared to user-centric clustering, espe-
cially from scheduling point of view. However cluster edge
users suffer from inter-cluster interference. Dynamic network-
centric clustering can minimise this effect by moving cluster
boundary dynamically.

Two main methodologies are identified in the literature on
dynamic network-centric clustering.

a) Greedy algorithms: Greedy algorithms are widely
used for cooperation cluster formation in literature. Clusters
are formed iteratively, starting from a randomly chosen BS to
maximise the main objective, typically spectral efficiency. Best
cluster is formed for the randomly chosen BS, maximising
the CoMP gains, however the clusters formed in later stages
of the algorithm suffer from sub-optimal clusters. It is rela-
tively less complex but may not achieve as good results as the
other methods, i.e., game theoretic clusters. A greedy uplink
clustering algorithm is studied in [44] aiming to maximise
spectral efficiency. It’s shown that dynamic clustering with
cluster size of two cells outperforms static clustering with
much larger cluster size. A predefined fixed cluster size is
proposed which is not the optimal solution for some clus-
ters. A similar approach is employed in [45] but a dynamic
cluster size is proposed. Authors have designed a dynamic
clustering solution for uplink multi-user distributed antenna
system (MU-DAS), where one cell has a number of RRUs
placed in the cell’s coverage area with fast fiber connection
to their cell. BSs are merged based on highest interference
created to the other users. However, clustering takes only
scheduled users into account at any point in time, hence not
taking load into account for cluster formation. Starting the iter-
ations from the highly loaded cells can improve the system
throughput as the CoMP gains will be maximised for clus-
ters formed in early stages of the algorithm. Also clustering is
proposed to change with each scheduling interval in this solu-
tion [45] which increases signalling due to high frequency
cluster changes. Both proposed algorithms in [44] and [45]
offer disjoint clusters where inter-cluster interference is still an
important factor reducing spectral efficiency. An overlapping
dynamic clustering is proposed in [46] to improve network
average sum rate and fairness. A greedy approach is consid-
ered starting from a random BS. Authors have shown better
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results with cluster size of four with overlap size of two when
compared to cluster size of eight with no overlap. The solu-
tion lacks scalability where large network size can lead to
increased complexity. Overlapping clusters will also require
more complex scheduling but overlap and cluster size param-
eters are introduced in the proposed algorithm to control this
complexity.

Greedy algorithms provide lower computational complexity
however lack on sub-optimal clusters especially for clusters
formed at later stages of the algorithm. Shortcomings of
greedy algorithm can be improved by employing coalitional
game theory for cluster formation based on merge-split rule
for maximising system throughput. Game theory can also pro-
vide distributed solutions with reduced signalling overhead
as opposed to centralised greedy algorithms, however coali-
tional game theoretic algorithm’s computational complexity is
higher than greedy algorithms [47]. Coalitional game theoretic
clustering is discussed in detail in the next paragraph.

b) Game theoretic clustering: There is an increasing
interest in applying coalitional game theory to design self-
organised, distributed cooperative clusters. A utility function
is introduced to formulate the cost and CoMP gain trade-
off for forming clusters. Proposed utility function can limit
the cluster size dynamically based on BS locations and user
profiles. Coalitional game theory can provide distributed,
stable, converging solutions to maximise CoMP gains. An
extensive tutorial on coalitional game theory for wireless
communications applications is presented in [48].

Li et al. [49] proposed a dynamic network-centric clus-
tering method employing a utility function to maximise the
second best servers of the cell edge users in the same cluster.
Cluster size is fixed to two only which leads to sub-optimal
clustering for varying network conditions. Also network clus-
tering formation is based on exhaustive search for collusion,
hence not scalable, i.e., complexity increases with network
size. Moon and Cho [50] have studied a dynamic cluster
formation algorithm which merges cells into clusters based
on the improvement on spectral efficiency, with configurable
maximum cluster size and the minimum efficiency gain. This
algorithm is semi-distributed where SINR measurements are
based on pilot signal measurements but still need a CCU for
cluster decision-making. It implicitly takes the number of users
into account and hence clusters are formed based on cell load.
Although a more flexible cluster size is introduced in [50]
when compared to [49], algorithm still lacks on scalability as
the complexity increases with the number of BSs involved.
Saad et al. [51] presented an application of a coalitional for-
mation game for user clustering in the uplink, maximising
the sum-rate capacity with a cost function based on power
requirements which is dependant on the distance between the
users. Inspired by [51], Guidolin et al. [47] developed a coali-
tional game theoretic clustering method where utility function
dictates average cluster size and targets for higher spectral
efficiency. It’s a distributed algorithm which does not need a
central entity and reduces signalling overhead. SINR at the
cell edge is also significantly improved when compared to a
greedy algorithm. On the other hand, solution lacks on scal-
ability where the cluster formation complexity increase with

network size. Computational complexity of such algorithms
can be reduced by limiting the candidate sites for coalition to
neighbour cells only. Utility function for forming coalitional
game theoretic clusters play an important role for optimal clus-
ters. Utility function need to include a realistic model for
the cost of cluster formation and the relevant CoMP gains.
Dynamic cluster size can be self-imposed with accurate imple-
mentation of a utility function. Also multi-objective clustering
can be implemented by including multiple metrics into the
utility function, i.e., energy efficiency, load balancing, spectral
efficiency and backhaul bandwidth limitations.

c) Other dynamic network-centric clustering algorithms:
A self organising dynamic clustering method is presented
in [52] where candidate clusters are formed from reported
list of cells from users. CCU is proposed to arrange clus-
ter solution by listing the candidate clusters with minimal
cost, where the cost function takes into account the cluster
size, number of users and reference signal received power
(RSRP). This algorithm is a basic one where cost function
can be improved to maximise SINR / spectral efficiency for
more optimal solutions. It lacks on scalability with increasing
complexity of handling high number of candidate clusters as
the network size / number of users increase. Time averaged
measurements from users is considered where fast fading is
eliminated. Weber’s algorithm [52] is further enhanced in [53]
by replacing the cost function based on received power levels
to a utility function with the aim of maximising the weighted
sum rate. Unlike [52], Baracca et al. [53] proposed a fast
changing cluster design, responding to fast fading channel
variations which will lead to increased signalling and possible
ping-pong cluster re-selections. To reduce signalling overhead,
cluster change frequency can be reduced to a wider time-frame
and averaging algorithm can be used for user measurements
which can eliminate fast fading variations.

2) User-Centric Clustering: Users are allocated their own
cluster of cells individually in user-centric clustering approach.
Although this method can give better SINR/throughput gains,
it’s more complex, especially in terms of scheduling where
user clusters overlap with each other. To reduce complexity,
user-centric clustering can be implemented in small groups of
cells rather than the whole network.

Garcia et al. [54] have studied macro diversity CoMP with
dynamic user-centric clustering, comparing random network
and hexagonal network topologies. It’s shown that CoMP gives
higher capacity results and bigger cluster size are required in
random networks due to the random nature of BSs with more
potential for inter-cell interference. Authors had no limitation
on user-centric clustering which leads to complex scheduling
between the BSs. To reduce complexity, user-centric clustering
can be limited to groups of cells for easier scheduling, less
signalling overhead and data exchange.

A three-tier clustering approach is presented in [55],
wherein it has been proposed that cell center users will not
use CoMP, users within the same site will use static clus-
tering between intra-BS cells and a user-centric clustering
is proposed for intra-site cluster edge users. Fixed cluster
size is assumed which can lead to unnecessary complexity
or less efficient coordination, depending on user location and
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SINR conditions. Similar complexity arises in works presented
in [54] and [55] where no limitation is proposed on user-
centric approach to any group of cells which will lead to higher
complexity with a large number of BSs cooperating at the
same time. In [56], a user-centric inter-cell interference nulling
is studied for downlink coordinated beamforming. Interference
nulling range is derived from received power levels to form
clusters for individual users. A threshold for relative power
levels is used to identify BS clusters.

User-centric clustering approach is an ideal scenario to pro-
vide an upper limit however it is not realistic due to increased
complexity. Hybrid clustering is discussed next, which limits
the user-centric approach to a group of BSs only to reduce
complexity.

3) Hybrid Clustering: Hybrid clustering approach is the
combination of network and user-centric approaches where
users are allocated their own preferred cells but limited to
a bigger group of cells which can be dynamically changing
to adapt to changing network conditions. Hybrid cluster-
ing is driven from the complexity/throughput gain trade-off
where user-centric clustering is used for better throughout but
its complexity is kept at manageable levels by introducing
network-centric clustering where users are limited to select
cells only within the network-centric cluster.

Zhao et al. [57] developed a hybrid clustering method where
a pre-defined network-centric clustering is used for cell cen-
ter users and a number of pre-defined overlapping clusters are
used for cell edge users to pick the best overlapping clus-
ter to maximise SINR for the cell edge user. Inter-cluster
interference on overlapping clusters is eliminated by orthog-
onal frequency allocation. Presented solution lacks on self
organisation as the pre-defined clusters are static, i.e., can’t
respond changes in the network (new sites, sleeping cells
etc). Although overlapping cluster patterns improve cluster
edge user performance, orthogonal frequency use prevents
the optimal use of the bandwidth. A simple downlink user-
centric clustering is studied in [58] where users coordinate
with two best serving cells according to the received power
levels under a bigger static cluster. Proposed static network-
centric clusters will suffer from high inter-cluster interference
and also fixed user-centric cluster size can lead to unnecessary
coordination, waste of resources and also possibly not being
able to cancel severe interference from third best server for
some users. A self-organised, dynamic network-centric clus-
tering can improve inter-cluster interference and also dynamic
user-centric cluster size can be employed for better per-
formance. In [59], a hybrid clustering model for downlink
SU-COMP is studied. Authors proposed static network-centric
clusters and cell edge users are proposed to have user-centric
clusters of fixed size of three within each network-centric
cluster. Authors also presented a good review of SU-COMP
scheduling and a SU-COMP joint scheduling algorithm is
provided for the proposed clustering scheme. The presented
clustering scheme has low complexity, but further work is
required to introduce dynamic network-centric clustering for
improved cluster design. Fixed cluster size is also another
shortcoming of the algorithm which can generate sub-optimal
clusters.

In summary, dynamic CoMP clustering is a promising
concept which can improve performance over static/semi-
static alternatives. However, increased complexity and per-
formance trade-off need to be evaluated for optimal solu-
tions. User-centric clustering provides a theoretical upper
bound for maximum performance gain but it requires com-
plex precoding design, scheduling and increased backhaul
bandwidth [54], [55]. To reduce complexity, user-centric clus-
tering solutions need to be limited to smaller network-centric
clusters. Main approaches in network-centric clustering in
literature are greedy algorithms studied in [44]–[46] and
more recently coalitional game theoretic approaches deployed
in [47], [49], and [50]. The key balance between additional
complexity and the potential CoMP gains can be achieved
by hybrid solutions where user-centric clustering is deployed
within network-centric clusters [57]–[59]. However, hybrid
solutions in current literature focuses either on dynamic user-
centric approach with static network-centric clustering or
dynamic network-centric clustering with no focus on user-
centric clustering. Further research is required to employ
dynamic clustering algorithms for both network-centric and
user-centric clusters for more optimal solutions. A summary
of CoMP clustering approaches based on self-organisation and
their shortcomings are provided in Table II.

VI. DYNAMIC CLUSTERING TAXONOMY

BASED ON OBJECTIVE FUNCTION

In this section, a novel CoMP clustering taxonomy is
presented based on the main objective function. The main
objective of CoMP is to mitigate interference from neigh-
bour cells and improve spectral efficiency in general but a
more comprehensive approach is required to include other
metrics/limitations for CoMP clustering. Backhaul bandwidth
limitations for CoMP implementation and energy efficiency
concerns for future wireless networks need to be included in
comprehensive CoMP clustering algorithms. Moreover, with
exponentially growing mobile data demand, better utilisation
of system capacity with load balancing will be a key con-
cept which need to be taken into account for CoMP cluster
design. Based on our detailed literature survey, main objective
functions studied are:

1) Spectral Efficiency
2) Backhaul Optimisation
3) Energy Efficiency
4) Load Balancing
A summary of CoMP clustering taxonomy based on objec-

tive function is given in Figure 6. In the following subsections,
each objective function is critically discussed and extensive
literature review is presented.

A. Spectral Efficiency

Main objective of CoMP is to mitigate inter-cell interfer-
ence within the cooperating cluster. Interference cancellation
leads to better SINR and improved spectral efficiency. Cluster
formation algorithms are designed to maximise spectral effi-
ciency as a common objective, however other utilities such as
backhaul bandwidth optimisation, energy efficiency and load
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TABLE II
SUMMARY OF COMP CLUSTERING APPROACHES BASED ON SELF-ORGANISATION

Fig. 6. CoMP Clustering Taxonomy based on Objective Function.

balancing have also been studied in the literature. Trade-off
between spectral efficiency and other objectives for opti-
mum clustering has been also in the interest of research
community [60].

3GPP identified three CoMP deployment scenarios for
LTE-Advanced and released a feasibility study, presenting
simulation results from over 20 sources showing significant
spectral efficiency improvements by deploying CoMP espe-
cially at the cell edge [7]. The most basic, intra-site static
clustering is studied as scenario-1 and over 20% increase in
spectral efficiency is observed at the cell edge with MU-MIMO
JT-CoMP case [7]. Inter-site static clustering solutions are
employed in [36] and [37] which is not able to respond to
the dynamic changes in the network and user/service profiles,
hence limiting the CoMP gains. Semi-dynamic clusters are
proposed in [40]–[43] where multiple static clustering patterns
are designed to mitigate inter-cluster interference. This type of
approach is more responsive to the dynamic changes of the net-
work and user profile, however it still lacks on providing full

spectral efficiency gain. Dynamic network-centric clustering
methods can further increase spectral efficiency by dynami-
cally changing CoMP clusters based on the spatio-temporal
changes in user profiles and network elements. A game-
theoretic, network-centric clustering approach is employed
in [47]. Papadogiannis et al. [44] used a greedy clustering
algorithm for uplink network-centric clustering to maximise
spectral efficiency. User-centric dynamic clustering approaches
are studied in [54] and [55] which provide an upper bound on
spectral efficiency gain but with increased complexity. Hybrid
solutions reduce this complexity where user-centric cluster-
ing is limited only within a network-centric cluster [57]–[59].
Dynamic clustering solutions require more complex precoding
design and scheduling, and increased backhaul. Complexity
and additional requirements are reduced in semi-static clus-
tering, and further simplified in static clustering with the
cost of reduced spectral efficiency gain. An extensive critical
review of CoMP clustering solutions based on static/semi-
static/dynamic approaches and the trade-off between complex-
ity and the additional spectral efficiency gains are provided
in Section V. A summary of different approaches and their
shortcomings are presented in Table II.

B. Backhaul Optimisation & Caching at RAN for JT-CoMP

As discussed in previous sections, one of the key require-
ment of CoMP is high backhaul bandwidth and low latency.
Depending on the type of CoMP, backhaul requirement will
vary. JT-CoMP will require more bandwidth due to user data
being shared between cooperated cells. Authors studied back-
haul bandwidth requirements for network MIMO in [61] and
concluded that backhaul requirement for CSI and schedul-
ing information exchange is negligible when compared to
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user data sharing. Hence, JT-CoMP require much larger back-
haul bandwidth than CS/CB CoMP. Backhaul requirement is
also strongly dependant on user SINR and cluster size. Users
with high SINR will demand higher throughput which will
increase backhaul demand. Biermann et al. [62] have stud-
ied distributed JT-COMP feasibility in terms of high backhaul
bandwidth and latency requirements especially in hotspot sce-
narios where certain backhaul links are more loaded than
others. In the proposed algorithm, all CSI is sent from cooper-
ated cells to the serving cell where it’s processed for precoding
design and sent back from serving cell to the cooperating cells.
Hence serving cell backhaul demand is more than other BSs
in the cluster. Based on the backhaul load on each BS, a
dynamic serving BS reassignment algorithm is proposed by
using “forced handover” to distribute backhaul load evenly.
Zhao and Lei [63] have designed a user-centric clustering
strategy to minimise the backhaul data transfer for the JT-
CoMP scenario where user data exchange between the BSs
will be very high. An optimised number of links is pro-
posed for a given CoMP cluster based on minimum SINR
requirement of each user. Heuristic approach is used to reduce
the links based on channel strength and “Signal to Leakage”
(SLR) ratio (i.e., taking signal power and also the inter-
ference caused to other users into account). Authors have
further improved this design in [64]. An optimisation problem
is formulated and approximate results are obtained by con-
vex relaxation. An iterative algorithm is followed to further
reduce the number of BSs in each user’s cluster. A con-
trol unit (CU) is proposed for the semi-distributed solution
where each BS is connected and share CSI with CU. Author’s
approach of further user-centric clustering optimisation in a
given network-centric cluster helps reducing wasted network
resources. However a trade-off between spectral efficiency and
backhaul bandwidth optimisation should be considered for
more optimal solutions.

1) Caching at the RAN for JT-CoMP: There is an increas-
ing interest in the research community to explore potential
benefits of caching popular multimedia content closer to the
user to reduce high backhaul requirement due to duplicate con-
tent download. A significant amount of network data usage
is due to duplicate downloads of few popular multimedia
content from Netflix, Youtube, Facebook etc. Caching the pop-
ular content at various points in the network, i.e., RAN, core
network or even the user devices can reduce the high back-
haul requirement and give opportunity for JT-CoMP deploy-
ment, where high backhaul capacity is not available [65].
Furthermore, caching closer to the user can improve overall
energy efficiency. A recent study on an operational 4G net-
work shows [66] that 73% of the data volume is cachable and
54% of the cachable data is revisited, so significant gains are
possible with caching.

In [67], caching at the BS is proposed and an opportunis-
tic cooperative MIMO is employed without high backhaul
requirement. Cells within the same cluster are proposed to
cache identical data aiming to be employed for multi-user
JT-CoMP. For users where requested data is available at the
cache, JT-CoMP is proposed. If the requested data is not
available at the cache, CB-CoMP is proposed where user-data

exchange between the BSs is not required but CSI exchange
is still employed for joint precoding. Deghel et al. [68]
presented a JT-CoMP solution in a limited backhaul capacity
scenario BS caching is introduced to reduce required backhaul
capacity for user data, hence increasing available backhaul
capacity for CSI sharing. Improved backhaul availability for
CSI sharing improves the accuracy in CSI knowledge at the
central node, resulting in better precoding, hence improved
interference cancellation.

Realisation of CoMP depends on high backhaul band-
width availability, hence CoMP clustering algorithms need to
take this limitation into account. Caching popular multimedia
proves to be one of the ways to reduce backhaul bandwidth
requirement for CoMP realisation. Cluster size and type of
cooperation are other factors that can change the backhaul
bandwidth requirement. Furthermore re-distribution of back-
haul data transfer to less-loaded cells can be deployed for
better CoMP gains.

C. Energy Efficiency

Energy efficiency has recently become an important topic
for wireless networks for both economical and environmental
reasons [69], [70]. It has been reported that information and
communications technology (ICT) industry contributes 2% of
the global carbon footprint, and it’s expected to increase to 3%
by 2020 [71]. In mobile communications, more than 80% of
the power is consumed in RAN, especially BSs [70]. As briefly
discussed in the introduction section, network densification is
one of the key tools to increase capacity for future wireless
networks to meet ever increasing traffic demand which will
severely increase energy consumption and OPEX costs. New
architectures like CDSA [17] and C-RAN [22]–[24] have been
envisioned to enable energy efficiency and reduce OPEX and
CAPEX costs in future wireless networks, mainly by providing
small cell coverage only when it’s required. Enabling CoMP
will also improve energy efficiency [15]. It’s been in the atten-
tion of research to design CoMP clusters to maximise energy
efficiency and to optimise the trade-off between spectral effi-
ciency and energy efficiency. On one hand, CoMP can reduce
cell/UE output power for a given QoS but there is also addi-
tional energy consumed for additional signal processing and
backhaul requirement.

CoMP clustering can be optimised for energy efficiency by
increasing the number of sleeping BSs and/or their sleeping
duration. In [72], BS sleeping with CoMP has been studied
for energy efficiency with static clustering and assuming one
cell is sleeping on each cluster during off-peak hours. A joint
sub-carrier and power allocation algorithm is proposed to min-
imise the power requirements for coordination and compensate
for sleeping cell for a given QoS. Cao et al. [73] has com-
pared the energy efficiency gains between CoMP and wireless
relaying by maximising the number of sleeping cells. Based on
the traffic demand, it’s shown that, energy efficiency gains are
almost constant in lightly loaded traffic conditions where net-
work is mainly coverage limited. In high traffic load, there is
almost no energy gains possible, whereas in “energy efficient
region”, dynamic energy efficiency algorithms can provide
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bigger energy efficiency. As BS density increases, the “energy
efficient region” also increases and the region for larger CoMP
gains decreases. In [31], user-centric CoMP clustering for all
cells within 3dB window is studied for cell switch-off on
lightly loaded cells to improve energy efficiency. It’s shown
that unnecessary increase in cluster size and imperfect channel
knowledge can lead to energy inefficiency. Up to 24% more
energy efficiency is observed in perfect CSI when compared
to imperfect CSI conditions. Authors proposed fast changing
clusters responding to fast fading changes which increases sig-
nalling overhead and also imperfect CSI knowledge leads to
non-optimal clusters. Cluster change frequency can be limited
to respond to large scale fading only which can average out
the fast scale changes for more reliable cluster formation.

Besides BS switch-off, deployment costs can be reduced
and energy efficiency can be maximised by taking network
coordination into account at network planning stage. In [74],
a BS planning scheme is proposed to reduce the total number
of required BSs for a given coverage and traffic quality of
service (QoS) by inter-cell cooperation. A single user (SU)
MIMO CoMP scheme with user-centric clustering method is
employed to choose the optimal BS locations for deployment
from a number of candidate BS locations to maximise energy
efficiency. A typical example of this work is to reduce the
number of BSs required from three to two BSs where some
users can’t be served without the third BS if CoMP is not
employed.

Deployment of CoMP and realisation of future network
architectures like CDSA and C-RAN will enable energy effi-
ciency by increasing the number of sleeping cells. However,
most studies in the literature are lacking the load conditions
in the network but concentrate on coverage requirements only.
With predicted mobile data growth, network capacity will be
under pressure and will require to be managed more intelli-
gently. BS switch-off with CoMP clustering algorithms will
need to include data demand and available capacity in the
network. Hence, a more comprehensive approach for dynamic
CoMP clustering should optimise energy efficiency and load
balancing jointly. We discuss CoMP clustering in relation to
load balancing in the next subsection.

D. Load Balancing

Load balancing has always been an important topic for
cellular networks due to non-even distribution of user traf-
fic, resulting in some BSs overloaded whereas other BSs not
fully utilised. Network planning process takes traffic distribu-
tion into account and BS locations are planned accordingly,
however unpredictable nature of user activities like traffic
accidents, mass events etc still cause overloaded cells. With
ever increasing traffic, predicted 1000 fold increase beyond
2020 [2], load balancing becomes even more important in
future cellular networks. Various load balancing schemes have
already been studied in [75] for traditional networks. A math-
ematical framework for cell load and a simple load balancing
algorithm is presented in [76]. Authors proposed to shift traf-
fic from loaded cell to its unloaded neighbours by changing
the handover offset parameter in iterations.

Imran et al. [77] presented a distributed self organised load
balancing algorithm to reduce reference signal power for the
congested cell to make neighbour cells more favourable and
hence distribute the traffic onto neighbour cells. Another dis-
tributed SON algorithm in [78] focuses on BS antenna tilt
optimisation to improve spectral efficiency at hotspots by find-
ing the users centre of gravity and focusing the antenna beam
to the hotspots. Kim et al. [79] presented a distributed load bal-
ancing solution from the idea of each BS periodically sharing
its average load with users and users utilise this information
alongside with signal quality to make the decision for cell
association. A class of user association schemes for HetNet
is presented in [80] to achieve load balancing between macro
and small cell layer.

Centralised scheduling in emerging technologies like
C-RAN [22]–[24] and CDSA [17] can also be utilised for load
balancing. Centralised resource management entity (RME) is
proposed for CDSA in [81] which will select the most suitable
SC for scheduling. Centralised RME can also aim to distribute
network load evenly between the SCs [17].

As discussed in previous sections, CoMP will introduce
spectral efficiency gain and increased throughput especially
at the cell edge [8]. Additional capacity from CoMP can be
utilised for load balancing through dynamic CoMP cluster-
ing based on cell load. Centralised scheduling function within
the CoMP cluster can be located possibly at the macro BS in
CDSA, or at the pool BBU cloud in C-RAN. Self organised
CoMP clustering algorithms can be developed to dynamically
shift traffic from loaded cells to less-loaded neighbours while
maintaining a certain level of QoS however there are no stud-
ies in the literature to our knowledge where CoMP clustering
is used for load balancing.

E. Multi-Objective Clustering

As seen in aforementioned subsections, dynamic CoMP
clustering can aim to improve not only spectral efficiency
but also other objectives like energy efficiency and load
balancing. Recent works on CoMP clustering have focused
on multi-objective clustering where two objectives are opti-
mised, trade-off between the objectives have been investigated.
Katranaras et al. [60] have compared a number of static clus-
tering options for trade-off between throughput and energy
efficiency in sparse, medium and dense deployment scenarios.
They have identified transmit power, inter-site distance and
SINR service demands as the main inputs for this trade-off.
Li et al. [82] proposed a dynamic CoMP clustering algorithm
with BS sleeping to maximise energy efficiency while main-
taining high achievable rate for all users. Candidate clusters
are formed by all possible combinations of groups of cells
with predefined cluster size and each BS selects a suitable
cluster from the candidate clusters by maximising achiev-
able rate for its users. Developed algorithm then looks for
cell load and moves users from cells with low load onto
other clusters to increase the number of sleeping cells and
hence better energy efficiency. Proposed clustering algorithm
lacks on scalability as number of candidate clusters increase
with network size, leading to high computational complexity.

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on February 25,2020 at 17:20:31 UTC from IEEE Xplore.  Restrictions apply. 



756 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 2, SECOND QUARTER 2017

TABLE III
SUMMARY OF COMP CLUSTERING APPROACHES BASED ON OBJECTIVE FUNCTION

Moreover, proposed algorithm fails to look at total system
capacity and load balancing aspects, i.e., BS load need to be
looked at for any congestion and reduce the number of sleep-
ing BSs for much needed capacity in the network. Hence,
energy efficiency and load balancing will need to be jointly
optimised for an improved multi-objective CoMP clustering
algorithm.

Available backhaul capacity is one of the biggest limita-
tions for CoMP, especially JT-CoMP. A number of research
works in literature focus on CoMP clustering where spec-
tral efficiency and backhaul requirement is jointly optimised.
Mayer et al. [83] presented the implications of backhaul chan-
nel reliability on spectral efficiency of the clusters. It’s shown
that, both JT and CB-CoMP scenarios give better spectral
efficiency results with strong backhaul reliability. However,
spectral efficiency improvement reduces sharply when back-
haul reliability goes down. As discussed in Section VI-B1,
caching popular multimedia content at the BS is an emerging
research area for reducing backhaul requirement and hence
enabling JT-CoMP in limited backhaul scenarios [67], [68].

Existing literature focuses on one limiting objective and
investigates the trade-off against spectral efficiency gains.
However, a more comprehensive CoMP clustering approach
need to take all limiting factors in the same algorithm for
intelligent clusters which jointly optimise backhaul bandwidth,
energy efficiency, load balancing and spectral efficiency. For
example, BS switch-off is a widely studied concept in lit-
erature as part of CoMP clustering, however only the SINR

constraints are taken into account to make sure there is enough
coverage for BS switch-off. However, other constraints like
RAN capacity, load balancing, backhaul bandwidth availabil-
ity also need to be considered in a realistic network for BS
switch-off decision. In this context, more research is required
for multi-objective CoMP clustering algorithms with above
mentioned constraints. A comparison of CoMP clustering
algorithms based on aimed objective and their shortcomings
are provided in Table III.

VII. FUTURE RESEARCH DIRECTIONS

In this section, we present open research areas for CoMP
clustering challenge. Potential use of Big Data in proac-
tive CoMP clustering is reviewed in the next subsection.
Its followed by open research areas in dynamic cluster-
ing approaches, reviewing the challenges on complexity/gain
trade-off of dynamic clustering and the need for comprehen-
sive CoMP clustering solutions to maximise not only spectral
efficiency but also other system objectives like load balancing,
energy efficiency and backhaul optimisation.

A. Big Data Empowered Proactive CoMP Clustering

As mentioned in aforementioned sections, CoMP has the
capability to significantly improve spectral efficiency and cell
edge throughput through cooperation of limited number of
BSs referred to as CoMP clusters. The state-of-the-art research
on dynamic CoMP clustering in general have a reactive line
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of action, i.e., CoMP clustering are designed/optimized with
respect to current network conditions. For example load bal-
ancing targeted CoMP clustering will kick in when congestion
is observed or diagnosed. However, in light of emerging
5G future cellular networks personified with ambitious QoS
requirements of almost infinite capacity or zero latency [3],
this approach will not be able to meet stringent performance
requirements of 5G. This is because in classic dynamic CoMP
clustering, certain time is required to observe the current con-
ditions, find optimum clustering with respect to the objective
function and current conditions and then trigger the appro-
priate clustering action. The resultant intrinsic delay is not
compatible with 5G targeted QoE levels. Therefore for 5G,
CoMP clustering paradigm requires proactive or predictive
approach such that spatio-temporal future network state in
terms of channel variation, mobility behaviour and capacity
requirements can be predicted beforehand. This is possible
through exploitation of the cognition of context of applica-
tion as well as state of the network by inferring network-level
intelligence from the massive amount of control, signalling,
and contextual data known as Big Data as proposed in [4].
Key elements and sources of Big Data for mobile networks
have been identified in [4]. By leveraging a dexterous combi-
nation of advanced techniques of machine learning, statistics
and optimization, Big Data can be tapped to enable and
empower CoMP clustering algorithms to achieve true perfor-
mance gains of CoMP. Endowed with predictive capabilities,
-thanks to Big Data- CoMP clustering algorithms can track,
learn and dynamically build user mobility and demand pro-
files as well as channel characteristics models to predict future
user locations coupled with service requests and channel state
information. This can lead to timely efficient CoMP clustering
as well as can help to alleviate high backhaul requirements.
Another advantage of exploiting Big Data in CoMP clustering
is that, it can represent the global state of the network which
enables the global optimal CoMP clustering with respect to
the defined objective functions such as energy efficiency,
spectral efficiency or load balancing as opposed to relying
only on the local information that may lead to only locally
optimal CoMP clustering solutions. As the current research
on CoMP clustering lacks this proactive perspective and to
the best of our knowledge, currently no existing work tar-
gets “Proactive CoMP Clustering” in general and “Big Data
empowered Proactive CoMP Clustering” in particular, there-
fore the goal of this section is to give future outlook of
Big Data enabled proactive CoMP clustering. In subsections
to follow, we briefly explain how Big Data can empower
prediction based proactive CoMP clustering algorithms in
terms of channel prediction, mobility prediction and user
profiling.

1) Big Data in Cellular Networks: In the context of cellular
networks, Big Data refers to the massive amounts of control,
signalling and contextual data that is being routinely produced
during day-to-day operation of cellular network. The potential
constituents of Big Data in cellular networks are [4]:

a) Subscriber level data: The subscriber level data com-
prises of key performance indicators obtained from a voice or
a data session initiated by the subscriber to give an indication

of the accessibility, retainability and integrity performances
of the network. Several metrics including blocked call rates,
access failure rates, setup times, success rate, and hand-over
failure rates project accessibility of the network. The dropped
call rates, completion times, packet data protocol context and
success rate together define the retainability of the network.
The metrics like speech and data streaming quality, through-
put, packet jitter and delay give an idea about user perceived
quality of experience (QoE).

b) Cell level data: It refers to the measurements that are
reported by a BS and all users within the coverage of that BS.
Examples of useful cell level data streams are measurements
reporting uplink noise floor in terms of reference interference
power, channel based power information, physical resource
block usage per cell, no. of active users per cell and minimiza-
tion of driving test (MDT) measurements. MDT reports consist
of the RSRP and reference signal received quality (RSRQ) val-
ues of the serving and neighbouring cells reported by the users
to their serving BS [84], [85].

c) Core network level data: The core network data
includes signalling information, historical alarm logs, equip-
ment configuration lists and service and resource utilization
accounting records (Call Data Records - CDRs and Extended
Data Records XDRs) as well as aggregate statistics of network
performance metrics.

d) Miscellaneous data: It consists of the structured infor-
mation already stored in the separate databases including
customer relationship management, customer complaint cen-
ter and spectrum utility maps. This also includes unstructured
information such as social media feeds, specific application
usage patterns, and data from smart phone built-in sensors
and applications.

2) Role of Big Data in Proactive CoMP Clustering:
In perspective of proactive CoMP Clustering, channel maps
built upon collected MDT reports and unified information
of handover traces and CDRs are potential Big Data con-
stituents that can be harnessed to predict future network state
through machine learning algorithms and statistical techniques.
Specifically, they can be utilized to predict future spatio-
temporal rate requirements along with the associated channel
state information as explained in subsequent subsections. This
can pave the way for enabling timely efficient prediction based
proactive user-centric dynamic CoMP clustering.

a) CoMP with big data aided channel prediction:
Accurate and timely channel estimation is one of the most
vital requirements of CoMP system. The coordinating BSs in
a CoMP cluster are typically assumed to be connected to a
centralized CCU through backhaul links [86]–[88]. In FDD
systems, each user within CoMP cluster needs to estimate and
predict the CSI from all BSs of the cluster and feed it back
to the serving BS which is then forwarded to CCU. Based
on the available CSI, joint transmission, user scheduling or
coordinated beamforming schemes are designed. The quality
of CSI has large impact on the performance of CoMP systems
and clustering decisions. Restricted feedback and backhaul
links induce different degrees of latencies resulting outdated
measurements [89]. The X2 latencies observed in 3GPP-LTE
deployed networks is of order 10 to 20 milliseconds [8], [90].
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The outdated CSI leads to severe performance degradation in
CoMP systems even when the users exhibit low mobility [7].
Channel estimation at the terminals as well as compression
and quantization of CSI are further sources of inaccuracy.

In time-varying wireless channels, channel prediction is a
popular approach to provide up-to-date channel information
and it is shown in [91] that the performance of CoMP sys-
tems is improved significantly even with the large backhaul
latency when channel prediction is applied. State of the art
prediction techniques like Kalman and Weiner filtering make
CoMP links more robust for CSI delays of few milliseconds
and at moderate mobility [5]. Recently Doppler-delay-based
prediction has been proposed wherein the channel for each
link between a transmitter and a receiver antenna can be mod-
elled by a number of multi-paths with their individual complex
amplitude, delay and Doppler frequency. These parameters can
be estimated for each path based upon the recent channel his-
tory embedded in Big Data and the future condition of the
channel can be predicted by inserting the estimated parame-
ters into the channel model. Both Doppler delay and Kalman
prediction lead to significant improvement in Mean Squared
Error (MSE) for the CSI that leads to better performance. The
powerful Big Data aided CSI prediction can be an important
enabler for CoMP clustering decisions.

Big Data can also play crucial role in proactive selection
of BSs for cluster formation. One of the vital sources of Big
Data in mobile communications are MDT reports consisting
of RSRP and other channel quality related metrics reported by
the users to their serving BS [84], [85]. The averaged RSRP
values of the BSs, as reported by the UEs, can be compared
to a threshold to determine which of these BSs should cooper-
ate. Based on current MDT reports, future channel conditions
can be predicted through conventional time-series forecast-
ing methods. In case of sparse MDT reports due to small
number of users like in small cells, light-weight Grey mod-
elling techniques [92] that are useful for short term forecasting
can be utilized as done in [93]. The grey model can pre-
dict the next RSRP value from data points obtained in the
database. Therefore, instead of waiting for actual MDT reports,
the predicted RSRP measurements can be fed to the chan-
nel estimation and subsequently to the cluster optimization
algorithm that proactively adapts the cell clustering in CoMP
perspective.

b) CoMP with big data aided mobility prediction:
Big Data aided mobility prediction can play important role in
proactive CoMP clustering decisions. Mobility prediction uti-
lizes persons mobility history, i.e., a series of locations and
corresponding dwell times to predict this persons next location,
as well as his/her dwell time in that location [94]–[100]. In
this way, CoMP clustering algorithms can plan in advance the
clustering decisions thereby meeting the strict latency require-
ments of 5G networks. Big Data as identified in [4] also
contains handover reports which contain Cell IDs and corre-
sponding timestamps whenever user is handed over to new
cell. Several techniques such as mobility pattern matching
using mobility database, periodicity and multi-class classifica-
tion and bio-inspired approaches as presented in [94]–[96] can
be used to predict user mobility behaviour. Markov and hidden

markov models have been commonly used for temporal-
spatial prediction purposes as in [97] and [98]. Received
signal strength indicator (RSSI) available in MDT reports can
also be utilized to predict future location as has been done
in [99] and [100]. The identified future location of the users
along with the corresponding time stamps can be fed to the
CoMP dynamic clustering algorithms (both user-centric as
well as network-centric) for computing optimal clusters.

Mobility behaviour of the users directly affects the CoMP
clustering decisions as CSI has small validity period for high
speed users and clustering decisions needs to be performed fre-
quently leading to high computational overheads. One solution
can be that low speed or static users can be served by CoMP
cluster BSs, however, high speed mobile users continue to
be served by single BS. By utilizing RSSI and the cell sizes
information embedded in Big Data and predicted future user
locations, CoMP clustering algorithms can be executed before-
hand leading to significant reduction in latency and bandwidth
requirements.

c) CoMP with big data aided user profiling: Call Data
Records (CDRs) are one of the key elements of the Big
Data that can be harnessed from a cellular network. CDRs
reflect mobile users behaviour and give out clues on how the
users utilize the network resources. CDRs contain information
about the voice calls and data usage pattern and are important
markers of temporal-spatial capacity requirements across the
deployed network [101]–[103]. CDRs can be utilized to pro-
file the network usage behaviour of the mobile users which
in turn can be utilized for user-centric or behaviour-centric
CoMP clustering. By applying machine learning and statistical
tools on CDRs, we can determine the capacity requirements of
the users at different time periods and can utilize this profile
information to cluster the CoMP enabled BSs to satisfy the
expected QoS requirements of the users.

Social media feeds are another element within Big Data
that give helpful insights about the interaction of the users and
expected temporal-spatial demand of network resources across
the network. Among many online social networks, Twitter is
one of the popular ways users share information and experi-
ence socially on the Web. Twitter data can be mined through
application program interface (Twitter APIs) wherein each
timestamped tweet contains number of useful information like
location, number of re-tweets, number of favourites, message
itself and hashtags. Twitter data can be utilized to estimate
traffic demand as number of tweets is highly correlated with
the number of people in confined places [104]. It can also
be utilized to assess networks QoE from subscriber’s perspec-
tive [105]. The social media feeds together with the CDRs can
be taped to accurately model the user behaviour and can be
utilized to optimize user-centric CoMP clustering algorithms.

3) Tapping Big Data for CoMP Clustering: Multifaceted
and multifarious Big Data can help to enable and optimize
the proactive CoMP clustering algorithms. Big Data consists
of big pool of training datasets that is of significant advan-
tage for prediction techniques based on advanced supervised
machine learning algorithms like deep learning methods [106].
However, Big Data comes with its own set of challenges like
how to efficiently tap the potential of this Big Data in real
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Fig. 7. Big Data Empowered Proactive CoMP Clustering Framework.

time that is hindered by four inherent characteristics of Big
Data, i.e., Volume, Variety, Velocity and Veracity [4]. Big Data
management tools under umbrella of Hadoop ecosystem are
potential enablers to deal with the acute dynamicity of the Big
Data. The main components of Big data processing platform
consist of [107]:

1) Trasmission Module consisting of Flume [108] and
Kafka [109] that uploads network data in real time with
stable transmission to the cloud platform.

2) Storage Module consisting of Distributed File System
(HDFS) [110] and HBase [111] with high fault tolerance
capability.

3) Processing Module comprising of MapReduce [112] for
parallel distributed processing, Spark [113] for cyclic
data flow and in-memory computing and Storm [114]
for enabling real-time analysis.

4) Management Module to monitor the whole plat-
form with Flume collecting the monitored data and
Zookeeper [115] to modify configuration parameters of
each machine and equipment.

The processed statistics from Big Data can then be fed
to advanced machine learning methods to model network
and user behaviour and predict future spatio-temporal net-
work states. By knowing probable future user locations, their
expected rate requirements and estimated channel state infor-
mation, CoMP clustering algorithms can proactively adapt
themselves on the fly to cope with acute dynamics of cellu-
lar networks resulting in seamless quality of perception. This
framework is depicted in Figure 7.

4) Relevant Work on Big Data Driven Proactive CoMP
Clustering: Although no existing work target proactive CoMP
clustering leveraging Big Data explicitly yet, there exist cer-
tain works, wherein dynamic CoMP clustering is performed
targeted at hotspots, assuming hotspot location are already
somehow known by the network. The Big Data processing
framework presented above cannot only identify the future
hotspots but it can also predict future load, e.g., using data
of mobility traces and past CDR records [107], [116], [117].
Once a hotspot is characterized, the appropriate CoMP algo-
rithm can be leveraged to cope with high capacity demands
for hotspots. Examples of work which can leverage this idea
include study in [118]. Rezagah et al. [118] have proposed a
novel cell structuring and clustering algorithm to dynamically
transfer network resources from sparse cells to crowded cells

or hotspots wherein optimal large cooperative clusters, per-
forming joint transmission (JT), are formed around hotspots
and the coverage of BSs are transferred to hotspots by dynam-
ically changing the antennas beam angles. With the proposed
big data framework in place, this process can be done proac-
tively, instead of reactively, thereby further improving the QoE
CoMP can offer.

Another work [119] has proposed a cross-tier coopera-
tion in non-uniform HetNets wherein cell edge hotspot users
are served by CoMP BSs. The location of clustered users
or hotspots present in the network have also been utilized
in [78] and [120]–[122] wherein network configuration param-
eters (antenna parameters) are optimized w.r.t the identified
hotspots. The underlying phenomenon is inherently the same
as in case of dynamic CoMP Clustering since network parame-
ters optimization is done based on hotspot location. The afore-
mentioned algorithms initiate reactively assuming hotspots
have already formed into the network and their location is cent
percent known accurately. However, with Big Data Predictive
Analytics, formation of hotspots can be predicted beforehand
as explained above and dynamic CoMP clustering can be per-
formed well in time to minimise QoE degradation time. This
is where Big Data comes into the picture.

Very recently, some works have emerged that leverage Big
Data driven predictive analytics in mobile networks for pre-
dicting hotspot formation using CDRs. The work in [107] has
performed Big Data collection, storage, and pre-processing of
CDRs and has proposed:

i The rules for extracting location data, and constructing
people trajectories

ii The methods for solving data noise (i.e., cell tower
oscillations)

iii The algorithms for discovering common mobility pat-
terns in densely populated area

iv Identifying hotspots.
Similarly, in [116], [117], and [123]–[125], Big Data technolo-
gies and analytical algorithms have been used for predicting
hotspot formation or forecasting pedestrian destinations with
satisfactory accuracy.

In a nutshell, Big Data driven predictive analytics predict-
ing the future spatio-temporal state of the network accurately
and using this knowledge for dynamic CoMP clustering well
in time is the future of the CoMP clustering that can truly
unleash the real potential of CoMP and can be instrumental
in improving user experience in future 5G cellular networks.
Presence of more data (Big Data) results in better and accurate
models as it allows the data to tell for itself,İ instead of relying
on assumptions and weak correlations since a weak assump-
tion coupled with complex algorithms is far less efficient than
using more data with simpler algorithms. This fact has been
captured by many studies, e.g., [126] and [127] wherein results
suggests for a given problem, adding more examples to the
training set monotonically increases the accuracy of the model.
However with aid of Big Data, as the ability to generate bet-
ter predictions continues to improve, it is noteworthy that the
accuracy of these predictions is only as good as the accuracy
of the underlying data (garbage-in, garbage-out). Leveraging
Big Data of poor quality for proactive CoMP clustering might
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produce erroneous predictions, counter-productive clustering
decisions and poor performance than that achievable with
conventional reactive dynamic CoMP clustering.

B. Dynamic CoMP Clustering Challenges

1) Complexity/Gain Trade-off for Dynamic CoMP
Clustering: Dynamic clustering has more potential for better
performance gains due to its ability to respond to network
and user/service profile changes. Inter-cluster interference can
be mitigated with dynamically changing cluster boundaries.
Both user-centric, network-centric and hybrid algorithms
have been studied in the literature. CoMP clustering research
on user-centric approaches lacks scalability and suffer high
scheduling/precoding design complexity. Network-centric
approaches mainly fail to provide full CoMP gains when
compared to user-centric cluster design. Hybrid clustering
provide a balance between complexity and CoMP gain
trade-off. However, existing works fail to provide fully
dynamic hybrid solutions. The challenge with fully dynamic
solution is the increased complexity especially with increased
scheduling and precoding design and additional overheads.
More rigorous research is required on novel hybrid solutions
where dynamic user-centric clustering is employed within a
dynamic network-centric clustering algorithm and the gains
of such algorithms against the complexity and additional
overhead costs.

2) Multi-Objective CoMP Clustering: CoMP is envisioned
for mitigating inter-cell interference and hence increasing
spectral efficiency. Hence the primary aim for CoMP clus-
tering is to maximise spectral efficiency, however other limi-
tations like load balancing, backhaul bandwidth availability,
system capacity and energy efficiency are also taken into
account for improved clustering solutions. Existing literature
focuses on maximising spectral efficiency along side with one
more objective, mostly focusing on backhaul bandwidth and
energy efficiency constraints. However, a more comprehensive
approach is required to take all constraints into account for a
realistic CoMP clustering solution. We outline the potential
research directions in multi-objective clustering as below.

a) Load balancing: As discussed in Section VI-D, load
balancing is an increasingly important concept for mobile net-
works due to the exponential increase in data demand [1].
CoMP is likely to be deployed in interference limited networks
where there is high data demand. An interesting research area
is to develop CoMP clustering algorithms to support load bal-
ancing while spectral efficiency is maximised. A load-aware,
user-centric CoMP clustering approach is presented in our
previous work [128], however further research is required to
analyse fully dynamic CoMP clustering techniques and the
trade-off between load balancing gains and potential losses on
spectral efficiency.

b) Backhaul optimisation: A number of research are con-
ducted for CoMP clustering which takes backhaul bandwidth
limitation into account. The main contributors for high back-
haul bandwidth requirement such as cluster size [63], [64] and
type of cooperation (i.e., CB or JT) [67], [68] are dynamically
changed to adapt to limited backhaul bandwidth availability.

RAN caching is employed in [67] and [68] to reduce high
backhaul bandwidth dependency for cooperation. However,
backhaul bandwidth limitation is studied in isolation, not in
relation to other objective functions like spectral efficiency and
load balancing. An open research area is to develop backhaul-
aware CoMP clustering algorithms which aim to maximise
spectral efficiency and user satisfaction in relation to backhaul
limitations and load balancing.

Another open research area is to utilise Big Data for RAN
caching to compensate for the high backhaul requirement. Big
Data aided proactive caching can play significant role in JT
mode of CoMP wherein user data is shared among cooper-
ating BSs. Such proactive caching can relax high backhaul
requirements of JT CoMP.

c) Energy efficiency: CoMP deployment and intelligent
clustering solutions can improve energy efficiency especially
with increasing the number of sleeping BSs [31], [72], [73].
BS sleeping has been employed in most works to improve
energy efficiency, however only SINR constraints are taken
into account for BS sleeping to make sure there is coverage
available for all users. As discussed in Section VI-E, other
constraints like system capacity and backhaul bandwidth will
need to be taken into account for BS sleeping. For example, a
more realistic approach should consider load balancing while
making decision for BS switch-off with the aim of maximising
energy efficiency. Sleeping cells may need to be switched on
to handle additional load in the network, however it comes
with the additional signalling cost overhead and degradation
on energy efficiency.

Furthermore, extensive research is required on compre-
hensive multi-objective clustering algorithms to include all
limitations/objectives, i.e., spectral efficiency, energy effi-
ciency, backhaul bandwidth and load conditions into algorithm
design and analyse the trade-off between multiple objective
gains and associated costs. Analytical tools like coalitional
game theory can be utilised for merging multiple objectives
into a single payoff function for exhaustive multi-objective
CoMP clustering design. Trade-off between different objec-
tives and optimum balance between these metrics is an area
worth exploring further. Moreover, Big Data aided predictive
models need to be explored further for novel proactive multi-
objective proactive CoMP clustering design to support much
faster response rates required for future networks.

VIII. CONCLUSION

This article provides an extensive survey on the CoMP clus-
tering methods for future cellular networks. We first give the
motivation for CoMP for future wireless networks and briefly
provide an outline of CoMP implementation challenges and
the need for CoMP clustering. We then provide a section to
give brief tutorial about different types of cooperation, associ-
ated challenges and propose network architectures like CDSA
and C-RAN which will enable CoMP implementation. The
core of the article provides an extensive survey on CoMP clus-
tering techniques available in the literature and introduce two
novel taxonomies for CoMP clustering algorithms based on
self-organisation and aimed objective function.

Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on February 25,2020 at 17:20:31 UTC from IEEE Xplore.  Restrictions apply. 



BASSOY et al.: CoMP CLUSTERING SCHEMES: SURVEY 761

Firstly, we provide a CoMP clustering taxonomy based on
self organisation, and critically discuss static, semi-static and
dynamic CoMP clustering works in literature. Dynamic clus-
tering algorithms are further divided based on their approach,
network-centric and user-centric approaches, their benefits and
shortcomings are highlighted.

Secondly, we present a novel CoMP clustering taxonomy
based on the objective function. CoMP clustering algorithms
aiming for spectral efficiency, energy efficiency, backhaul opti-
misation and load balancing are extensively discussed. More
focus is given on comprehensive multi-objective clustering,
available works in literature are presented, shortcomings are
identified in detail.

We then outline open research areas for CoMP cluster-
ing and propose potential approaches for solutions. Proactive
CoMP clustering is envisioned to accommodate much faster
response rates required for 5G. We highlight the potential use
of Big Data to empower prediction based CoMP clustering
algorithms. Big Data in cellular networks context is identified,
and use of Big Data for channel prediction, mobility predic-
tion and user profiling prediction is discussed. We identify Big
Data aided prediction models to form a future outlook in pre-
diction based CoMP clustering. We then discuss further future
research areas on dynamic CoMP clustering complexity/gain
trade off and multi-objective CoMP clustering algorithms to
optimise load balancing, backhaul limitation, energy efficiency
and spectral efficiency simultaneously.
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