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ABSTRACT 5G is anticipated to embed an artificial intelligence (AI)-empowerment to adroitly plan,
optimize and manage the highly complex network by leveraging data generated at different positions of
the network architecture. Outages and situation leading to congestion in a cell pose severe hazard for
the network. High false alarms and inadequate accuracy are the major limitations of modern approaches
for the anomaly—outage and sudden hype in traffic activity that may result in congestion—detection in
mobile cellular networks. This indicates wasting limited resources that ultimately leads to an elevated
operational expenditure (OPEX) and also interrupting quality of service (QoS) and quality of experience
(QoE). Motivated by the outstanding success of deep learning (DL) technology, our study applies it for
detection of the above-mentioned anomalies and also supports mobile edge computing (MEC) paradigm
in which core network (CN)’s computations are divided across the cellular infrastructure among different
MEC servers (co-located with base stations), to relief the CN. Each server monitors user activities of
multiple cells and utilizes L-layer feedforward deep neural network (DNN) fueled by real call detail record
(CDR) dataset for anomaly detection. Our framework achieved 98.8% accuracy with 0.44% false positive
rate (FPR)—notable improvements that surmount the deficiencies of the old studies. The numerical results
explicate the usefulness and dominance of our proposed detector.

INDEX TERMS Cellular network, anomaly detection, call detail record, deep learning, big data analytics,
sleeping cell, congestion detection.

I. INTRODUCTION
To address the manifold capacity thirst in upcoming genera-
tion of cellular systems (5G), researchers are actively investi-
gating advanced technologies: ultra-dense networks, massive
multiple-input multiple-output (MIMO) systems, cognitive
radios, etc. [1]. These will enforce radical changes to the
cellular infrastructure making it more complex; an artifi-
cial intelligence (AI)-empowerment will therefore be piv-
otal in many aspects to efficiently manage the network.

The associate editor coordinating the review of this manuscript and
approving it for publication was Junaid Shuja.

The AI-enabled features can leverage big data generated from
the network [2, Fig. 3] to solve network-related issues.

Each year in the US alone, more than $15 billion are
depleted in handling cell outages [1] that costs the network
operators in the form of operational expenditure (OPEX).
Cell outage has a special case called sleeping cell, in which
inferior services are provided by a cell to its users and it
experiences a total or partial deterioration without generating
any alarm—it behaves normal from the perspective of oper-
ation, administration and maintenance unit of the network.
Sleeping cell can emerge due to multiple reasons: hardware
failure due to a fault in antenna, cabling or other component
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at eNodeB [3]; and random access channel (RACH) fail-
ure due to RACH misconfiguration, firmware/software
fault or exorbitant load at eNodeB [4, Sec. 3].

Abrupt rise in user traffic of a cell can lead towards
congestion (circumstance with increasing traffic but rel-
atively smaller throughput to satisfy the demand, inter-
rupting network’s performance and user’s quality of
experience (QoE) [5]) if remedial actions are delayed [6].
Such actions may include: offloading traffic to other base
stations [7], allocating extra resources [6], and dynamic
pricing in quality of service (QoS)-enabled networks [8].
A precise congestion discovery is fundamental for an effec-
tive congestion-control mechanism. It’s indispensable for the
QoS-enabled networks providing services that assure high
QoS to the end-clients [8]. Sleeping cell and congestion,
both can severely affect user’s QoE that may consequently
increase the churn rate [1]; because annoyed users are more
likely to switch network provider rather than calling customer
service [9]. It will also result in revenue loss to the service
provider if timely detection and necessary action is delayed.

An anomaly is an observation that violates standard pat-
tern or considerably deviates from the overall norm of the
data [10]. In cellular networks, anomalies can have a contex-
tualmeaning.Wang et al. [11] defined anomaly as a city scene
(highway, tourist area, railway station, etc.) that has unusual
network performance indicator values and characteristics,
to carry out network optimization. Papadopoulos et al. [12]
utilized billing-related information to identify anomalous
mobile devices that carryout attacks against cellular network.
In [13], a significantly deviated user QoE as compared with
the predicted QoE is defined as an anomaly, and is utilized
for network optimization.

In this paper, we treat and henceforth refer both network
performance-related problems—sleeping cell and soared
traffic that might result in congestion—as anomalies. Since
sleeping cell or possible congestion can lead to a situation
having unusually low or high cell traffic activity, respectively;
we use anomaly in cell traffic pattern as proxy for anomaly in
the network performance. Hence, we leverage subscriber call
detail records (CDRs) for the anomaly detection. Tradition-
ally, CDRs are compiled and maintained for administrative
use (such as, for keeping proof of user’s network usage
for billing purpose), but nowadays they are also exploited
for diverse purposes: Securing 5G networks against cyberat-
tacks [12], analyzing cell site [14], enabling energy efficient
networks [15], and studying human mobility patterns [16].

Deep learning (DL) outperformed the performance of
many conventional ML techniques and accomplished break-
throughs in various domains: computer vision, natural lan-
guage processing, and genomics [18]. Additionally, mobile
edge computing (MEC)—based on decentralized compu-
tation, network management, and storage, as compared
with centralized cloud computing architecture—has recently
gained attention for its potential utility in 5G networks to
push computation towards the network edges (e.g. access
points and base stations). It aims to relief core network (CN)

from executing heavy-computation tasks and enables latency-
critical and computation-intensive applications at resource-
constrained mobile devices by leveraging huge idle storage
space and computation power already available at the net-
work edges [19], [20]. We contemplate DL blended with
MEC can play a decisive role in the anomaly detection
that will in turn improve user’s QoE and network’s QoS,
increase customer retention, and reduceOPEX for the cellular
operators.

This research addresses the detection problems in the view-
point of DL and MEC. We build upon our previous work [21]
and present an enhanced MEC-supported anomaly detection
framework, executed at each MEC server monitoring a group
of cells. The framework is based on L-layer feedforward deep
neural network (DNN) that relies on real CDRs and aims to
detect the anomalies with higher accuracy and lower false
positive rate (FPR). In contrast to our rudimentary work [21],
this extended research contains the following additional fea-
tures, it:

1. Proposes MEC-based framework in which computa-
tion is offloaded to MEC servers, distributed across
the cellular network, for efficient and robust anomaly
detection.

2. Utilizes an advanced optimization technique known
as adaptive moment estimation (ADAM) as compared
with its predecessor known as momentum. Compara-
tive analysis of ADAM’s performance with previously
used optimization method is also performed using var-
ious additional measures: error rate, precision, recall
and F1.

3. Introduces additional results to compare the training
time of our model implemented by utilizing different
optimization techniques.

4. Presents preprocessing algorithm, and explains the
CDR data in more details with data visualization and
a sample of raw CDR dataset to fully describe the
DNN’s implementation.

Overall, this study makes the following contributions:
1. Applies an MEC-based DL framework that capitalizes

on several modern DL techniques from the literature,
to attain optimal performance for each cell and reliefs
CN of heavy computation.

2. Exploits historical data to infer past user behav-
ior’s trend for anomaly detection in recently-collected
10-minute user activity log datum (test instance).

3. Integrates an extra feature by considering Internet
usage activity (neglected in the previous works) besides
call and SMS, for a more robust framework.

The remainder of paper is organized as follows. Rele-
vant work is summarized in Section II. Preliminaries to
our DL based anomaly detection framework are explained
in Section III. Framework’s implementation is described
in Section IV. Subsequently, results and framework’s per-
formance evaluation are discussed in Section V. Finally,
discussion on results and concluding remarks are drawn
in Section VI.
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FIGURE 1. (a) System topology: The computation for anomaly detection is spread across the cellular infrastructure having a number of MEC servers (each
collocated with a base station) that monitor user activities of a group of cells (depicted by blue, green and gray colors) by analyzing their call detail
records (CDRs). The CDRs are generated at the core network (CN) and are sent to the relevant servers that perform data analytics. Upon detection of
anomalous cell(s), the server communicates the anomalous cell ID(s) with the CN to initiate remedial actions. (b) MEC server’s functioning: Raw CDRs are
preprocessed to have a feature vector x (i ). The vector is then passed to a L-layer feedforward deep neural network (DNN) that finally produces a
predicted output ŷ (i ). Note, we exclude details on the parameters (w [l ]

ij and b[l ]
i ) and also consider a single example for clarity.

II. RELEVANT WORK
Current and old cellular networks treat anomaly detection
as an important issue due to its apparent benefits to the
network operators and the users. It is addressed in the lit-
erature by using variety of methods—mostly by utilizing
various ML methods on some key performance indicators
(KPIs) or measurements collected via minimize drive testing
(MDT) feature of third generation partnership project (3GPP)
release 10 [22].

Detection of sleeping cell engendered by hardware
malfunction in the base station was carried out
in [3], [23]–[26], in which catatonic sleeping cell (a cell in
which user activity completely halts) was focused. On the
other hand, [4], [27] oriented their studies to detect sleeping
cell caused by RACH failure, in which crippled sleeping
cell (a cell in which user traffic abates in contrast to nor-
mal) was targeted. Imran et al. [2] reported 94% detection
accuracy using k-nearest neighbor-based anomaly detection
model. Masood et al. [28] proposed a deep learning(deep
autoencoder)-based detector utilizing signal to interference
plus noise ratio (SINR) and reference signal received power
(RSRP) values of neighboring and serving BSs (extracted
via MDT functionality). However, the above approaches
only consider spatial data collected for a single time occur-
rence that yields instantaneous detection of sleeping cells;
therefore, the result could be transitory with a minute affect
on QoS and may disappear by the time it is corrected
[29, Sec. IV C]. Apart from sleeping cell, Ramneek et al. [8]
worked on detection of congestion for QoS-enabled
networks.

In contrast, following studies dealt with the problems by
employing data analytics on CDR dataset and proposed a
lighter ML-based solution as their method utilized the exist-
ing data (CDRs) rather than KPIs; procurement of KPIs
demands additional resources that burdens the network [1].

Parwez et al. [6] applied k-means and hierarchical clustering
algorithms to detect soaring traffic (that may lead to conges-
tion) in a cell by analyzing past one week data. Although the
approach resulted in 90% accuracy, but it was time-inefficient
as past one week data were considered to find the anomaly.
Improving upon their work, [1] utilized a statistical-based
semi-supervised ML approach to detect sleeping cell (both,
catatonic and crippled) and the situation leading towards con-
gestion in past hour’s data (having records for outbound and
inbound call and SMS activities) by exploiting CDR dataset
that had information about past several week’s user activities.
They reported 92% accuracy; however, they also gained 14%
false positive rate (FPR)—such a high FPR means that false
alarms may waste a significant OPEX and resources.

As compared with the above works, our MEC-based
solution utilizes data analytics (by incorporating past data
with temporal features into the decision making, yielding in
detecting long-term anomalies rather the instantaneous ones)
and state-of-the-art techniques in DL literature to generate
maximum accuracy and minimum FPR by analyzing each
10-minute CDR data-segment. The provided solution is
(1) lighter for CN, as it is based on distributed deployment of
MEC servers that distributes computation for anomaly detec-
tion instead of burdening the CN; (2) agile, as it utilizes CDR
dataset instead of requesting addition data from the network;
(3) robust, as it incorporates an extra Internet activity feature,
apart from call and SMS activities; and (4) high-precision,
as it has lesser false alarms and higher accuracy.

III. PRELIMINARIES
A. TOPOLOGY OF SYSTEM, AND VISUALIZATION AND
CHARACTERIZATION OF THE DATASET
Topology of system, shown in FIGURE 1 (with functioning
of theMEC server) and fully portrayed in Section IV, is estab-
lished upon long term evolution - advanced (LTE-A) cellular
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FIGURE 2. Data visualization: The spatiotemporal data are divided spatially into 100 × 100 cells across Milan city and
temporally into 10-minute logs for a total of 62 days starting from 1st Nov., 2013 to 1st Jan., 2014. (a) An overlay of the
10,000 cells with Milan’s map (taken from Bing Maps). Each cell has a 235 m side length. A region, indicated by a red square,
is zoomed-in for clarity. (b) Cell ID 5638, covering portion of a road alongside San Siro stadium, is shown. (c) and (d) illustrates
user traffic activities of the cell ID 5638 in terms of SMS and call (both outbound and inbound), and Internet, respectively.

TABLE 1. Sample of raw CDR dataset from 1st January, 2014.

network [1, Fig. 1]. CDR dataset utilized in this study was
generated at LTE-A’s CN and made available by Telecom
Italia [30].

The geo-referenced spatiotemporal (CDR) data contain
over 319 million user-activity records for a 100 × 100 cells
spread across Milan, Italy. An overlay map of these 10, 000
cells with Milan’s map is shown in FIGURE 2(a). The dataset
is temporally divided into 10-minute timestamps for a two-
months duration from 1st Nov., 2013 to 1st Jan., 2014;
provided in 62 files, each containing records of a single
day. Each file contains on average 5.15 million records
and each record contains five user-specific activity features:
SMS incoming, SMS outgoing, call incoming, call outgo-
ing and Internet usage. Some details pertaining to the sub-
scriber—phone number, location and exact number (or unit)
of each activity—are removed in order to preserve privacy.
However, the provided quantity of activities is proportional to
the real amount of activities [1]. A sample of the CDR dataset
is given in Table 1.

To visualize the dataset, we focus on cell ID 5638 that
covers an area close to San Siro stadium in western Milan
(FIGURE 2(a) and (b)). Since the measurements of SMS and
call activities (both inbound and outbound) have same scale
[30], we extract and combine them for each hour and 62 days,
illustrated in FIGURE 2(c). Similarly, the Internet activity is
depicted in FIGURE 2(d). The annotated anomalous traffic
activity spikes on 22nd Dec., 2013 correlates with an ongoing
soccer match [31]; the one on 1st Dec., 2013 is also due to
an ongoing match, and is also evident in the results of [1,
Fig. 7(a)] and [6, Table 1].

B. DATA PREPROCESSING AND SYNTHESIS
For each cell, day, and 10-minute timeslot in a 24-hours
timeline; raw CDRs are pre-processed to extract the features
that are then merged to create a vector x(i) ∈ R5 (here-
after, referred as an instance), where i is the index of the
example. DL model requires large number (hundreds or even
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Algorithm 1 Data Preprocessing
Inputs: CDRDataset: Raw dataset containing subscriber
activities, recorded for each 10-minute duration and stored
in the form of 62 files, each file representing a single day.
CID: Identification number of the target cell.
TimeStampValues: Contains numeric values of the beginning
of every 10-minute time interval (in Unix epoch) during the
intended 3-hours range.
Output: Xtotal
Method:
1: for each file f in CDRDataset
2: Import file f and store its contents in a matrix.
3: Replace blanks with 0.0 (to avoid error in summing

NaN, in later steps).
4: Remove the column containing Country codes.
5: Update the matrix by storing entries only related to

CID.
6: Remove the column containing Cell ID.
7: for each timestamp t in TimeStampValues
8: Sum all inbound SMS activity values and store

them as SMSin.
9: Sum all outbound SMS activity values and store

them as SMSout .
10: Sum all inbound call activity values and store

them as CALLin.
11: Sum all outbound call activity values and store

them as CALLout .
12: Sum all Internet activity values and store

them as Internet .
13: Store SMSin, SMSout , CALLin, CALLout

and Internet as one example in a vector x.
14: Store example x as a column entry in matrix

Xtotal .
15: end
16: end
17: return Xtotal .

thousands) of examples to work on, that may correspond
to CDRs of more than a year; however, we only have a
total of 62 examples (for each timeslot and corresponding
to 62 days). To overcome this hindrance and for data aug-
mentation, we consider all the examples in a 3-hours range
as examples belonging to a single 10-minute timeslot. This
yields a total of 1, 116 examples (6 examples per hour ×
3 hours × 62 days) that are arranged in the form of a matrix
Xtotal ∈ R5 × 1,116. Since human activities vary during dif-
ferent hours of a day; selection of a single 3-hours range
would confine the interpretation of our results for only that
range. Thus for a broader scope, we utilize three different
ranges in our experiments: morning, from 6 to 9 am; after-
noon, from 11 am to 2 pm; and evening, from 5 to 8 pm.
The preprocessing method is summarized in Algorithm 1.
The examples Xtotal are synchronously shuffled to have an
identical distribution and to increase the effectiveness of the
algorithm [32, Ch. 8]. We then divide them into training set

with 781 examples (70% of the total) and test set having the
remaining 335 examples.

Deep neural network (DNN) utilized in our research is
based on supervised learning; hence, labeled dataset is com-
pulsory for training and testing the model. Since output label
y(i) ∈ R1 (for each example in the training and test sets)
is missing in the CDR data, we synthetically generate it
by using Euclidean norm. An example x(i) is considered a
point in 5-dimensional Euclidean space. The corresponding
output label y(i) is marked 1 (anomaly) if the example’s norm
‖x(i)‖2 deviates more than the norm of one standard deviation
(SD) σSD ∈ R5 from the mean µ ∈ R5: ‖µ − σSD‖2 >

‖x(i)‖2 > ‖µ + σSD‖2; otherwise 0 (normal). Note, a higher
SD means inclusion of more points as normal and having
lesser anomalous points; this might not work well to detect
performance deviations of a cell and hence we choose one
SD. We can calculate the elements of mean and SD using the
standard equations from statistics. We also utilize train set
for this purpose. We arrange the corresponding labels of train
and test set examples to form matrices Ytrain ∈ R1 × 781 and
Ytest ∈ R1 × 335, respectively.

C. PERFORMANCE METRICS
We employed several metrics for our model’s performance
evaluation. Their values are calculated using the predicted
test set output Ŷtest ∈ R1 × 335 and its comparison with the
actual test set labels Ytest ; and by using information from the
confusion matrix [33], comprised of the following:
• True positive (T+ve): number of examples labeled as
anomalies by the algorithm (in the predicted test set
output) that are also anomalies according to the test set
labels.

• True negative (T−ve): number of examples marked as
normal and are actually normal instances.

• False positive (F+ve): number of examples misclassified
as anomalies.

• False negative (F−ve): number of examples mislabeled
as normal instances.

Using confusion matrix, we calculate the following per-
formance metrics: accuracy (prediction’s success rate), error
rate, precision (fraction of positive instances that are truly
positive), recall (fraction of T+ves from the total number
of positive examples), FPR (F+ves out of all the negative
examples), and F1 (weighted harmonic mean of the precision
and recall); by using the following equations [33]:

Accuracy =
T+ve + T−ve

T+ve + T−ve + F+ve + F−ve
, (1)

Error rate=
F+ve+F−ve

T+ve+T−ve+F+ve + F−ve
=1−Accuracy,(2)

Precision =
T+ve

T+ve + F+ve
, (3)

Recall =
T+ve

T+ve + F−ve
, (4)

FPR =
F+ve

F+ve + T−ve
, (5)
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and

F1 = 2
Precision× Recall
Precision+ Recall

. (6)

D. SOFTWARE
The preprocessing and results are generated by exploit-
ing MATLAB and the complete DNN is actualized using
Python (programming language). Experimentation is per-
formed in a commercial PC (i7-7700TCPU, 16GBRAM, and
Windows 10 64-bit operating system).

IV. IMPLEMENTATION
In this section, we briefly discuss the implementation details
of L-layer feedforward deep neural network (DNN), inte-
grated in our anomaly detection framework and how it is
trained for each individual cell—optimally tuned in terms of
number of layers, number of units each hidden layer contains,
weight initialization strategy, regularization, and optimiza-
tion method to yield maximum performance. Once trained,
the framework residing in the MEC server can utilize the
DNN to detect anomalies in the testing phase: when CDRs
arrive after every 10-min duration. The framework can occa-
sionally re-train the network as the performance degrades
over time.

A. DEEP LEARNING BASED ANOMALY DETECTOR
We apply L-layer feedforward DNN having an input layer
l = 0, hidden layers from l = 1 to L − 1 and an output layer
L, illustrated in FIGURE 1(b), where L represents number
of (hidden and output) layers in the network. Each layer has
one or more units (represented by circles in the figure) that
uses a non-linear activation function to produce the output.
Functions like sigmoid, hyperbolic tangent (tanh), rectified
linear unit (ReLU), and leaky ReLU (LReLU) are thoroughly
discussed in our previous work [21]; while Swish—gated
version of sigmoid activation function—is a new function,
reported to yield better results as compared with ReLU [34].
It is mathematically expressed below:

Swish function:

g(z) = z× σ (z) (7)

where, σ represents the sigmoid function. Sigmoid func-
tion is utilized in the output layer and one of the afore-
mentioned functions is applied in the hidden layers. The
model schematics with forward and backward propagations
are also explained in [21]. Once the parameters (weights
and biases) are fine-tuned, the trained DNN uses forward
propagation to predict the output Ŷtest by utilizing the test
set.

B. IMPROVING PERFORMANCE OF DNN
We leveraged different modern DL techniques in our frame-
work, described below, to improve and render optimal
performance.

FIGURE 3. Dropout on hidden layers of a 4-layer network during
iterations 1 and 2. p is the retention probability.

1) WEIGHT INITIALIZATION METHODS
Gradient exploding or vanishing is a major problem faced
during training phase due to inappropriate weight initializa-
tion, that makes learning difficult for the model. Heedful
selection of initialization strategy can cure this and improve
DNN’s performance by assigning weight values that are
neither too small nor too large [17, Ch. 6]. We experiment
with the following weight initialization strategies: Common,
Xavier, and He (explained in details in [21]) in this study.

2) REGULARIZATION
A fundamental challenge to DNN is of overfitting, in which
the model performs well on training set but fails to generalize
to new examples. Regularization, which refers to modifica-
tion of the learning algorithm, is used to control overfitting
and reduce the test error [32]. L2 regularization, also known
as weight decay, is the most common type of regularization.
It penalizes the square values of the weights in the cost
function in order to drive all the weights to smaller values.
Smaller values lead to simpler hypotheses, which are most
generalizable [17].

Dropout [35] is another regularization technique in which
neurons (along with their connections) are randomly shut
down during training of a DNN; and hence at each itera-
tion, a different model is trained that uses only a subset of
the total neutrons. The dropped neurons do not contribute
to the training in both forward and backward propagations.
A better generalization to an unseen data can be achieved as
this technique prevents the network to have dependency on
any particular neuron by making its presence unreliable [36].
FIGURE 3 demonstrates dropout mechanism using a 4-layer
network (for simplicity).

Our experiments embed the above-discussed regulariza-
tion techniques in the DNN model.

3) OPTIMIZATION METHODS
ADAM [37] is one of the most effective adaptive learning
rate optimization algorithm for training a DNN that com-
bines ideas from momentum (described in detail in [21]) and
RMSProp (another optimization method for the details of
which, readers can refer to [38]). ADAM uses the following
update rule for weightW [l]:

W [l]
= W [l]

− α
vcorrected
dW [l]√

scorrected
dW [l] + ε

(8)
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TABLE 2. Hyperparameters’ values utilized in this study for different optimization methods.

where, vcorrected
dW [l] and scorrected

dW [l] (given below) are bias cor-
rections, of first moment and second raw moment esti-
mates, respectively, to account for their zero initialization
[32, Ch. 8], [37]; and ε is a small number added for numerical
stability.

vcorrecteddW [l] =
vdW [l]

1− (β1)t
(9)

scorrecteddW [l] =
sdW [l]

1− (β2)t
(10)

where, vdW [l] and sdW [l] (given below) are exponentially
weighted moving averages of historical gradient and the
squared gradient, respectively; t counts the steps carried by
ADAM update; and β1, β2 ∈ [0, 1) are hyperparameters that
control the two averages.

vdW [l] = β1 vdW [l] + (1− β1) dW [l] (11)

sdW [l] = β2 sdW [l] + (1− β2) (dW [l])2 (12)

The update rule for bias parameter b[l] is similar to the
above rule. We implement ADAM in our DNN model and
compare its test performance (in terms of various metrics
mentioned in Sec. III-C) with gradient descent (GD), mini-
batch GD, and momentum. For this purpose, the hyperparam-
eter values mentioned in Table 2 are used, along with ε =
1 × e−8 (suggested default value [32, Ch. 8]). Additionally,
we investigate their training time.

V. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION
We present various experimental results in this section.
Although the CDR dataset contains records pertaining to
10, 000 cells, our DNN model performs anomaly detection
for a single cell at a time. To demonstrate robustness and
transferability of our model, we present results based (aver-
aged) on randomly chosen 1, 000 cell IDs out of the total
10, 000 cell IDs (available in Milan dataset). In addition,
we also present results processed by using a small subset
(up to ten cell IDs) for a detailed analysis and compari-
son. Note that mentioning of morning, afternoon or evening
followed by a cell ID indicates that the model is trained

TABLE 3. Performance statistics of our anomaly detector utilizing
mini-batch GD with ADAM and its comparison with Momentum.

and tested on a corresponding 3-hours range data (discussed
in Sec. III-B).

A. NUMBER OF LAYERS AND HIDDEN UNITS
The performance of a DNN can vary across the spectrum
of L and n[l]h . In practice, framework would search for their
optimum values that yield maximum accuracy for each cell
by empirically evaluating their impact on the test accuracy
of our DNN. To demonstrate this, we vary L from 2 to 20
and n[l]h from 1 to 50 using data from cell IDs 1 (Afternoon
hours), 1943 (Evening hours), 5638 (Morning hours), and
9607 (Evening hours)—due to the inadequate space, we only
show outcomes of these four randomly chosen cell IDs.

Our empirical results in the form of heatmaps, illustrated
in FIGURE 4, elucidates the impact of various settings of
n[l]h and L on the test accuracy. We also highlighted three
particular examples signifying maximum accuracies. It can
be seen that deeper layer having moderate number of hidden
units yield the highest accuracy. Dual maximum accuracies
imply that one might be computationally efficient to attain
than other. For simplicity, we set L and n[l]h to 17 and 25,
respectively, for our further experiments (for all cell IDs).

B. ACTIVATION FUNCTIONS
We run our model with mini-batch GD having hyperparame-
ter values listed in Table 2, to find an activation function that
yields maximum performance. FIGURE 5 (top) and (bottom)
illustrates the effect of utilizing various activation functions
in terms of error rate by using a subset of total cell IDs
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FIGURE 4. Test accuracies for cell IDs 1 (Afternoon hours), 1943 (Evening hours), 5638 (Morning hours), and 9607 (Evening hours) for
various configurations of n[l ]

h (number of hidden unit(s) per hidden layer) and L (number of layers).

FIGURE 5. Impact of utilizing various activations in hidden layers on
DNN’s performance.

and 1, 000 cell IDs, respectively. We can clearly observe
that sigmoid achieved the feeblest performance with highest
error rate for most of the cell IDs in FIGURE 5 (top) while
Swish also yielded overall poor performance that is evident
in FIGURE 5 (bottom). Interestingly, for cell ID 2321, all the

FIGURE 6. Effects of using various weight initialization techniques on
DNN’s performance.

activations performed uniformly. Overall, ReLU surpassed
other activation functions as evident in both of the figures and
hence we choose ReLU for further experiments.

C. WEIGHT INITIALIZATIONS
We continue with our previous model configuration and the
randomly chosen cell IDs, and initialize weights according to
Common, Xavier, and He initializationmethods (explained in
details in [21]). We also set ReLU activation in hidden layers
for this purpose, as discussed previously. FIGURE 6 exem-
plifies the impact of selecting various weight initialization
schemes on DNN’s test accuracy. We can observe that He
surpassed other initialization strategies and yielded highest
average accuracy.
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FIGURE 7. Influence of using different optimization methods on various DNN’s performance metrics.

FIGURE 8. Average training time analysis of different optimization
methods.

D. OPTIMIZATION TECHNIQUES
The superiority of mini-batch GD with momentum and
ADAM over ordinary batch GD is clear in FIGURE 7.
Although, in cell ID 4671, momentum has slightly bet-
ter performance than ADAM but overall mini-batch GD
with ADAM surpassed all other optimization techniques.
It accomplished highest accuracy, recall, and F1; and also,
lowest error rate and FPR in most of the cells. Note, for cell
ID 7816, ADAM achieved a perfect performance.

In Table 3, we report various performance measures of our
anomaly detector, averaged over the results from randomly
selected 1, 000 cell IDs, along with the improvement we
got by utilizing ADAM as compared with the momentum.
As compared with our previous work [21] in which we uti-
lized mini-batch GD with momentum for anomaly detection,
we achieved significant performance improvements by utiliz-
ing mini-batch GD with ADAM in this paper.

E. TRAINING TIME
Another advantage of utilizing ADAM is faster training time
that is evident in FIGURE 8 in which we compare the aver-
age training time of our model utilizing all the discussed
optimization methods. Mini-batch GD with momentum con-
sumes maximum training time, while ADAM deplete the
lowest, and is the most suitable optimization method.

VI. CONCLUSION AND INSIGHTS FOR FUTURE WORK
Performance-wise, our MEC-based DL framework eclipsed
the previous anomaly detection methods [1], [2], [6]. It can
potentially improve network’s QoS and user’s QoE; and trun-
cate OPEX for the network operators. Our proposed frame-
work accomplished 0.44% FPR (Table 3), a significantly
reduced value as compared with the reported 14% in [1]; and
98.8% accuracy, a great improvement as compared with the
reported 94% accuracy in [2].

Our study endorses the concept of harnessing the largely
untapped CDRs (using big data analytics) instead of utiliz-
ing traditional measurements and analytical approaches for
the network analysis [1], [15]. Our research’s main inno-
vation is the incorporation of the Internet activity feature
(disregarded in previous works [1], [6]) that makes our
research more robust as our DL framework can detect anoma-
lies pertaining to a situation when Internet activity swiftly
rises/declines but the call and SMS activities are normal. An
example of such situation could be an abruptly increased
Internet activity during a music festival inferring a neces-
sity of additional network resource allotment. In addition,
MEC-based approach reliefs core network from heavy com-
putation tasks, offloaded to various MEC servers spread
across the network.
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A deterrent in practical implementation of our deep learn-
ing approach is the requirement of deluge of examples to
extract a meaningful pattern in the CDR data; however, uti-
lizing larger dataset—the acquisition of which is another
issue due to privacy concerns—can surmount the difficulty.
We can then preprocess the dataset using more sophisticated
software: Apache Hadoop or Spark [1]. Another restraint on
fully employing our approach is the possession of labeled data
due to the supervised nature of our algorithm; affixing fault
data, generated at the core network and containing historical
alarms’ logs [2], with CDRs and then labeling them accord-
ingly can overcome this restraint.

The timestamp interval of 10 minutes is crucial for the
results and hence more variation could be tested in the future
studies to determine the impact of increasing the time dura-
tion granularity to perform more coarse-grained analysis,
i.e. take three 10-min intervals instead of just one; or the
granularity can also be decreased to perform more fine-
grained analysis, i.e. by considering even smaller than a
single 10-minute interval (the practical LTE network can
be set to generate CDR dataset in such settings). Hence it
will be an interesting future direction that could be explored.
In this connection, our previous work considered [1] a 1-hour
interval instead of 10 minutes—we combined six 10-minute
timestamp activities—and detected anomalies in the 1-hour
user activity data by using semi-supervised machine learning
method. In the current research work, we however chose to
decrease the interval so that the anomaly detection could
be performed quickly and hence the remedial or diagnostic
actions could be taken sooner.

Because of the potential of upcoming cellular networks to
have an AI-empowerment, the implemented algorithms need
to be quicker, increasingly proficient and less perplexing:
future works can explore meliorative methods. We can also
extend our study for anomaly detection in Internet of things
(IoT) [39]; however, due to the limited resources (such as
power consumption) the IoT devices might have entirely
different activity pattern that will need more examination.
With rising fame of DL technology, which has an enormous
potential for utility in 5G networks, our work applies DL to
accomplish substantial performance betterments for abnor-
mality detection. This indicates reduction in OPEX for cel-
lular operators along with an improvement in the network’s
QoS and user’s QoE.
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