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Abstract—Data-driven machine learning is considered a means
to address the paramount challenge of timely fault diagnosis in
modern and futuristic ultra-dense and highly complex mobile
networks. Whereas diagnosing multiple faults in the network
at the same time remains an open challenge. In this context,
the data sparsity is hindering the potential of machine learning
to address such issues. In this work, we have proposed a data
augmentation scheme comprising Pix2Pix Generative Adversarial
Network (GAN) and a customized loss function never used
before, to address the data sparsity challenge in Minimization
of Drive Tests (MDT) data. Our proposed unique augmentation
scheme generates images of MDT coverage maps with Peak
signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) values of 25 and 0.97 respectively, which are significantly
higher than those achieved without our customized loss function.
The performance of data augmentation scheme used is further
evaluated with a Convolutional Neural Network (CNN) model
for simultaneously detecting most commonly occurring network
faults, such as antenna up-tilt, antenna down-tilt, transmission
power degradation, and cell outage. The CNN applied on the
data generated from the 1% of the MDT data with the proposed
augmentation scheme has lead to a gain of 550% in the detection
of all classes, including the four faults and cell with normal
behavior, as compared to when it is applied on the data generated
without our customized loss function.

Index Terms—GAN, ZSM, Fault diagnosis, Automation, Ma-
chine Learning, Deep learning, Wireless cellular networks.

I. INTRODUCTION

Network Performance Management(NPM) has always been
a strenuous job highly dependent on skilled human resources.
Network operators spend a significant share of their OPEX on
NPM. But with the emergence of contemporary and futuristic
technologies aka 5G, beyond 5G (B5G) and 6G, it has become
essential to automate the functions of NPM. 3GPP introduced
Self Organising Networks (SON) for automating network
operations grouped in three main categories of self-healing,
self-configuration, and self-optimization. The research on SON
has lead to significant progress made so far in automating
network operations in 5G, and it also provides the ground
base for the projects like Hexa-X and ETSI ZSM aiming
on Artificial Intelligence (AI) driven automation in B5G and
6G [1]. Research work on self-healing function in SON has
set the premises for the automated NPM by introducing the
concept and solutions for the automation of fault detection
and diagnosis. AI equipped SON heavily relies on data-driven
machine learning for the automation of network operations.

An important and equally challenging task of NPM in
emerging and futuristic networks is automating the detection
and diagnosis of cells facing some type of technical issues.
Thanks to 3GPP release 10 for introducing Minimisation Drive
Test (MDT) that enabled network operators to collect key
data from users’ equipment, rather than conducting drive test
incurring too much operational cost and unnecessary delays.
MDT data and machine learning can help in devising solutions
for the automation task here but the sparsity of MDT data
limits its potential. There exist different approaches like in-
painting techniques and machine learning based models that
can help in addressing data sparsity. They all have there pros
and cons. But one machine learning tool recently developed,
Generative Adversarial Network (GAN), has gathered the
much attention of the researchers for its performance and
efficacy in applications like addressing data sparsity.

Different GAN architectures proposed in recent research
mostly aim at image-based applications like image completion,
image super-resolution, image transformation, etc. But these
GAN are proved to be very effective for such tasks as address-
ing data sparsity in the form of image completion. The key
advantage of GANs is that, instead of just creating copies or
averaging out values, they learn the data distribution patterns
and create the new samples from those distributions. The
newly generated samples are similar but not the same as the
original ones. This little variance in the GAN generated data
samples can reflect the real-world variations in the outcomes
of the same network deployment schemes.

In this article, we propose a novel scheme for automating the
detection of multiple commonly occurring network faults from
the sparse MDT data. To the best of our knowledge, it is the
first time that GANs are used to address sparsity challenges in
mobile networks MDT data, presented as images, for detecting
multiple faults in the network. The contributions we have made
in this study are summarised as follows:

• We have introduced a Pix2Pix GAN-based unique data
augmentation scheme to address data sparsity in MDT
reports. The proposed scheme can generate a complete
coverage map from the 1% data.

• We have introduced our own customized perceptual loss
function, never used before, that has increased the per-
formance of the GAN model manifolds.

• We have introduced a CNN model that can successfully
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(a) Transmission power (b) Cell outage (c) Antenna up-tilt (d) Antenna down-tilt (e) Normal coverage

Fig. 1: Signatures of normal coverage and different network faults

detect multiple faults in the network even in sparse data
and yields manifold gain for the detection of multiple
faults on the data augmented with our proposed scheme.

The rest of the paper is organized as follows. The Section II
offers a survey on state-of-the-art. Section III provides a brief
description of data generated from the simulator. Section IV
discuss the methodology adopted for the data enrichment and
fault diagnosis. Section V presents discussion on the results
and Section VI concludes the study.

II. RELATED WORKS

There are many studies that propose schemes and solution
for cell outage detection [2], [3] and many of them take it as
anomaly detection problem. But, there are very limited studies
that focus on the detection of other network issues than the
cell outage,that may cause sub-optimal performance in specific
cells in the network. The studies on the diagnosis of such faults
are even rare [4]. Whereas the detection of multiple faults,
instead of just one single fault, is still an open research issue.
One of the such studies is [5], where the authors have applied a
semi-supervised learning scheme on real network Call Detail
Record (CDR) data for grouping cells into multiple classes
based on their performance. They have detected and diagnosed
cells with sub-optimal performance and identified reasons of
sub-optimal performance. But this study used CDR data form
real network and rely on the input from the expert for the
labelling of cells based on their performance, and presents
only broad level network performance issues.

In a recent study [4] authors have proposed solution for
the diagnosis of commonly occurring multiple faults such as
site outage, transmission power, antenna up-tilt and antenna
down-tilt. In addition to issues addressed in [4] authors in
study [6] have introduced solution for diagnosing even more
advanced network issues like Too Late Handover (TLHO),
Inter-Cell Interference (ICI), and Cell Overload (CO). But
main bottleneck of these two studies is, they are using com-
plete coverage map generated from simulators. Whereas in
the real network data points are very sparse. But the aspect
of addressing data sparsity for the NPM management tasks is
missing in literature.

Recently GANs have been very popular as a tool for data
augmentation and have been used for diverse applications.
Most popular applications of GANs are image based, like
for image generation, image to image translation, image

super-resolution, semantic segmentation etc., [7]. For images,
two main application of GANs have been image quality
enhancement and image completion. GANs have been used
to successfully generate complete images from the incomplete
images [8] and improve the resolution of the images [9].
The same concepts can be applied in our case for generating
complete MDT network coverage map from the incomplete
coverage map. This approach has potential to address the data
sparsity issue in MDT reports.

III. DATASET DESCRIPTION

In this study for the MDT data generation, we have used At-
tol, an RF planning software capable to generate real scenario
data. To make sure that the data generated is close to real-
world network data, we have considered network topology and
parameters from a real mobile network operator in Brussels.
Besides that the network is also simulated over an area in
Brussels, Belgium considering 15 types of clutters based on
different terrain and environmental profiles. The simulated
network comprises 24 sites (macrocells) and 72 transmission
antennas (cells), with 3 antennas deployed on each base
station, overall covering an area of 15 km2. Detail about the
network parameters used is listed in Table I.

Using that simulation environment, from the MDT reports
we have generated SINR based network coverage map of 72
cells with 68 cells performing normally and four randomly
selected cells are induced with any of the four faults listed
below. Samples of the each possible status of the cells are
shown in Figure 1. The color range from green to red present

TABLE I: Network parameters used for MDT data generation

Network Parameters Values
Propagation Model Aster Propagation Model (Ray-tracing)
Maximum transmission power 43 dBm
Cell individual offset (CIO) 0 dB
Antenna tilt 0
Antenna gain 18.3 dBi
Carrier frequency 2100 MHz
Network layout 24 Macrocell BS
Simulation area 15 km2
Transmitters (sectors) per BS 3
Base station height Actual site heights
Clutter types 15 classes

Geographical information Digital Terrain Model (Ground heights)
Digital Land Use Map (clutter classes)
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Fig. 2: Process flow diagram for MDT data augmentation and classification of multiple faults

poor to good SINR values in the network. In total 22,864
coverage map images are generated.

• Low Transmission Power (LTP): Maximum transmission
power of a normally functioning cell is 43 dBm. But,
based on common experience in the industry, here we
have reduced it to 25 dBm.

• Cell Outage (CO): In this type of issue cell is not func-
tional at all, it can be caused by transmitter deactivation.

• The antenna is tilted by an angle of −20o from the
standard normal antenna angle of 0o.

• This fault is induced by changing the tilt value of the
simulation from 0o to 20o.

IV. PROPOSED SCHEME FOR DATA AUGMENTATION AND
FAULT DIAGNOSIS

The important steps of the methodology adopted in this
study to accomplish two main tasks, addressing data sparsity
and diagnosing multiple network faults along with a prelimi-
nary step of generating relevant sparse data images, are listed
in Figure 2 and discussed in this section.

A. Generating sparse data

One of the main objectives of this study is to address the
challenge of data sparsity in mobile networks. The sparse data
images are, therefore, generated from the complete images
of simulated coverage maps already discussed in Section III.
Since each pixel in the images is a representative of an SINR
value from a UE, therefore, to create an extreme data sparsity
scenario, for this study, we have removed 99% of the pixels
from the images that left only 1% of as much information as
present in original complete images. The original images are
resized to 256 by 256 dimensions before pixel removal for
convenience in image processing and consistency in imple-
mentation of deep learning. Since each pixel represents a user,
therefore, a complete 256 by 256 image means, the 15km2

coverage area in the image has 65,536 users and the number
of users per cell is around 910. So when we remove 99% of

the pixels then the new incomplete images have around 655
users in the 15km2 coverage area i.e around 9 users per cell
or base station BS and around 43 users per km2.

B. Generating enriched data using GAN

Next important task is developing a scheme for generating
complete network coverage map from the incomplete coverage
map images of 1% data points. For that purpose we have used a
conditional GAN architecture, Pix2Pix-GAN proposed in [10]
with cutomized perceptual loss function in [11] also used in [9]
with VGG-19 model. Pix2Pix GAN is a conditional GAN that
takes an input image x, like an incomplete network coverage
map shown in Figure 3a, along with a noise vector z, to learn
a mapping function from x to y the target image which is the
complete coverage map as shown in Figure 3b and to generate
the outcome image ŷ like shown in Figure 3c. We provide
noise only in the form of dropout, applied on several layers
of our generator at both training and test time. The dropout
noise is observed to lead to minor stochasticity in the output
of our model making generated images more close to the real
network scenarios.

Like the standard architecture of GANs, Pix2Pix also
comprises a generator and a discriminator. Where the main
objective of the Pix2Pix proposed in [10] is:

G∗ = argmin
G

max
D

LcGAN (G,D) + λLL1(G) (1)

Where LcGAN (G,D) presents the objective function of
typical conditional GAN computed as follows:

LcGAN (G,D) = Ex,y [logD(x, y)] + Ex,z [1− logD(x,G(x, z))] (2)

Here the generator G tries to minimize this objective against
an adversarial discriminator D that tries to maximize it with
following approach: The authors in [10] included the other
part, one of the commonly used loss function, the LL1 , to
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(a) Incomplete 1% sparse data (b) Original complete map (c) Generated from the GAN

Fig. 3: Sample of images from input(left),target (middle),and output (right) in Pix2Pix GAN

compute the distance between the pixel values of generated
and target image as follows:

LcGAN (G,D) = E
x,y.z

[∥yi − ŷi∥1] (3)

However, the above MAE optimization can lead to satisfac-
torily high PSNR, but often it lacks high frequency content
which results in perceptually unsatisfying solutions. We have,
therefore, introduced a perceptual loss also known as feature
reconstruction loss which is a type of content loss introduced
in [11]. Rather than encouraging the pixel to pixel match of
the output image ŷ and target image y, we encourage GAN
to learn similar feature representations as computed by the
loss network ϕ. while processing the image x if the ϕj (x)
is the activation of the jth layer of the network ϕ and j
is a convolutional layer then ϕj(x) results in a feature map
of shape Cj × Hj × Wj . The feature reconstruction loss is
the normalized, squared Euclidean distance between feature
representations computed as follows:

ℓϕ,jfeat(ŷ, y) =
1

CjWjHj
∥ϕ(ŷi)− ϕ(yi)∥22 (4)

So in this study we have used two network functions ϕ to
compute the above perceptual loss. One ϕ is VGG-19 inspired
from [9] and the other ϕ is our own CNN network. We have
computed the perceptual loss as an additional loss to the loss
computed in equation IV-B. As a result the objective function
in our case becomes:

G∗ = argmin
G

max
D

LcGAN (G,D) + λLL1
(G) + αℓϕ,jfeat(ŷ, y) (5)

where λ = 100 and α = 10−3 as suggested in [10] and
[9] respectively. So using the using the objective function
in equation IV-B in Pix2Pix GAN architecture proposed in
[10] we have generated the network coverage maps from the
sparse data coverage map. We have generated images using the
perceptual loss in IV-B with two network VGG and our own
network CNN separately and results for the both are compared
in the results section.

Once the images are generated from the GAN a crucial
task is to evaluate the quality of the generated images. Com-
mon evaluation metrics measure the pixel to pixel euclidean
distance which does not take the contextual or structural

information into consideration. Here we have therefore used
two popular and relevant metrics, Peak Signal to Noise Ratio
(PSNR) to evaluate the pixel to pix match and structural sim-
ilarity index measure (SSIM) to evaluate structural similarity.
PSNR and SSIM are good indicative of the image quality but
better PSNR and SSIM values not necessarily mean that the
images generated are true representation of original images.
Apart form these evaluation tools, we have majorly relied on
the performance of our classifier for the selection of images
generated by the Pix2Pix GAN.

C. Classifying multiple faults

In total around 16000 images are generated from Pix2Pix
GAN, which makes 70% of the total images generated from
the simulator. The generated images have all pixel values
and visually look similar to the original images. After the
enriched images generation, the next step is to identify the
four faults present in the network using those enriched images.
For that goal, we fine-tuned many of the popular pre-trained
models and also applied a custom CNN architecture. For the
development of the classifier, we split the GAN-generated data
into train and test data, such that 80% of the data is used for
training classifiers and 20% of the data is used for evaluation.

The classifiers are developed such that they not only predict
the four BS having any issue and type of the issue present but
also predict which BS performs normally. Hence the classifier
has 360 predicates in total, 72 cells having five possible
outcomes, performing normal, or having issues due to up-tilt,
down tilt, transmission power degradation, or complete outage.
Overall accuracy can not be the representative metrics to
evaluate the performance of such a classification scheme. Since
we are trying to predict multiple faults so it is important to
know that in how many cases(images) status of all 72 cells are
detected correctly from five possible outcomes. Here, therefore
we have used the exact match as a metric to find in how
many cases all 360 predicates are predicted correctly. Besides
that, we have also calculated the class-specific accuracy to
reflect the accuracy rate of identification of any individual
fault or normal behavior. The third factor we evaluate is the
performance of the classifier for detecting the number of faults.
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V. RESULTS AND DISCUSSION

In this section, first, we present the results produced from
the Pix2Pix GAN data augmentation scheme applied for
addressing the data sparsity. Later, the results of the multi-
fault classification scheme are presented.

A. Results of data enrichment with Pix2Pix GAN scheme

A representative sample of the images generated as the
result of the Pix2Pix model-based augmentation scheme is
shown in Figure 3c. In Figure 3, the image 3a on the left
presents the sample from the sparse data input images for
the Pix2Pix GAN scheme used for data augmentation. Images
like 3a are produced by removing 99% of the pixels from the
complete coverage maps. The image 3c on the right presents
a sample from the generated images with our proposed data
augmentation scheme. Even visually it can be seen that 3c
looks almost the same as the original complete coverage
map 3b in the middle.

Figures 4a and 4b present the PSNR and SSIM value for
the five epochs where the data generated showed the best
five performances on classifier as reflected from the Figures 5
and 6. So when we applied the VGG and our custom loss
functions in our Pix2Pix GAN models, it not only improved
the PSNR and SSIM values for data generated at each epoch
as shown in the Figures 4a and 4b but the performance of the
classifier also improved significantly as it can be seen from the
Figure 6. The histograms in Figures 4c and 4d present PSNR
and SSIM values of all images generated from the GAN model
with our custom loss function trained for epoch 40. The data
generated from this epoch yields the best performance in the
classification for the multi-fault diagnosis. It can be seen that,
here, for the majority of the images generated PSNR value
is between 22 and 27 similarly the SSIM for the majority of
images generated is between 0.96 and 0.98. It is an indicator
that the GAN has learned for features for the majority of the

(a) PSNR over best five epochs (b) SSIM over best five epochs

(c) PSNR Histogram of 40th epoch(d) SSIM Histogram of 40th epoch

Fig. 4: SSIM and PSNR for data genrated from Pix2Pix GAN
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images and there are fewer images for which GAN could not
grab the desired information.

B. Results of classification schemes

The performance of the classifiers is evaluated on the
original complete map data, sparse data (with 1% data points),
data generated from sparse data with Pix2Pix GAN using
simple reconstruction loss function (SRL-GAN data), and data
generated from Pix2Pix GAN with perceptual loss functions,
one exploiting VGG model, labelled as VGG-GAN data, and
the other with our Customized Loss Function (CL-GAN data)
based on our own CNN classifier. The results of the some
best performance predefined popular image-based classifica-
tion models using transfer learning along with the results of
our own CNN model, all on the data generated from VGG-
GAN up to eight epochs, are presented in Figure 5. It can be
seen that the CNN proposed outperforms predefined models.
The performance of the predefined model is observed to be
even more poor on the raw sparse data images, whereas CNN
could identify all the classes in around 119 samples out of
3201 test samples when trained and evaluated on sparse data.

Since CNN has shown significantly better performance as
compared to other models, therefore, further detailed results
are presented for CNN only. Figure 6 shows the performance
of CNN for correctly detecting all five classes when applied
on the detests generated with Pix2Pix SRL-GAN, VGG-GAN,
and CL-GAN. The results are presented for those five epochs
where CNN has the best five performances, 1 for the first
best and 2 for the second-best performance. Figure 6 clearly
shows that the use of perceptual loss improves the quality of
images and the performance of the classifier subsequently. By
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detecting all five classes for 72 cells in 440 coverage maps,
the use of the VGG-loss increased the exact match rate when
compared to the data generated with simple SRL-GAN where
for 368 coverage maps all classes were correctly predicted.
Our customized loss function has lead to further significant
improvement in the exact match rate by detecting all classes
in 792 images out of 3201.

Figure 7 further reflects the potential of our augmentation
and classification scheme. It shows that for the best quality
data set generated with CL-GAN, the classifier could identify
all classes including four faults in around 25% of the test
samples, whereas it could identify four and three classes in
almost 35% and 26% of the test samples. So overall it can be
seen that in around 86% of cases at least three classes could
be identified correctly. For the exact match detection rate for
all classes only, it can be clearly seen that our proposed data-
augmentation scheme comprising Pix2Pix CL-GAN, yields a
gain of around 115% as compared to data generated by SRL-
GAN and a gain of around 565% as compared to all fault
detection rate on raw data.

The detection accuracy of each individual class is shown in
Figure 8, where it can be seen that the normal cell behavior
could be detected easily even when CNN is applied on the
raw data leading to around 96% detection accuracy. The other
comparatively easily detected fault is coverage outage which
is detected with an accuracy of around 73% for the CL-GAN
data. The rest of the faults have almost the same detection rate
of around 65% for the CL-GAN data.

VI. CONCLUSION

In this study, we have presented a comprehensive scheme
comprising a unique data augmentation method for addressing
data sparsity and a classification model to diagnose multiple
faults in the network. As part of the data augmentation scheme,
we have introduced a customized perceptual loss that helps
a Pix2Pix-GAN model generate images of high quality with
PSNR and SSIM values of around 25 and 0.97 respectively. We
have evaluated the performance of our augmentation scheme
using a CNN model that yields a gain of 550% in the
detection of all five classes, including four faults as compared
to when it is applied on the sparse data sample with 1% of
the information available. Our proposed scheme can not only
help in addressing the data sparsity challenge in MDT but
also provides a solution for the multiple-fault diagnosis an
important task in network performance management.

ACKNOWLEDGMENT
This work is supported by the Qatar National Research Fund

(QNRF) (a member of The Qatar Foundation) under Grant No.
NPRP12-S 0311-190302. The statements made herein are solely the
responsibility of the authors.

REFERENCES

[1] K. Koufos, K. Haloui, M. Dianati, M. Higgins, J. Elmirghani, M. Imran,
and R. Tafazolli, “Trends in intelligent communication systems: Review
of standards, major research projects, and identification of research
gaps,” Journal of Sensor and Actuator Networks, vol. 10, no. 4, p. 60,
2021.

[2] A. Asghar, H. Farooq, H. N. Qureshi, A. Abu-Dayya, and A. Imran,
“Entropy field decomposition based outage detection for ultra-dense
networks,” IEEE Access, 2021.

[3] T. Zhang, K. Zhu, and D. Niyato, “Detection of sleeping cells in
self-organizing cellular networks: An adversarial auto-encoder method,”
IEEE Transactions on Cognitive Communications and Networking,
2021.

[4] J. B. Porch, C. H. Foh, H. Farooq, and A. Imran, “Machine learning ap-
proach for automatic fault detection and diagnosis in cellular networks,”
in 2020 IEEE International Black Sea Conference on Communications
and Networking (BlackSeaCom). IEEE, 2020, pp. 1–5.

[5] A. Rizwan, J. P. B. Nadas, M. A. Imran, and M. Jaber, “Performance
based cells classification in cellular network using cdr data,” in ICC
2019-2019 IEEE International Conference on Communications (ICC).
IEEE, 2019, pp. 1–7.

[6] W. Zhang, R. Ford, J. Cho, C. J. Zhang, Y. Zhang, and D. Raychaudhuri,
“Self-organizing cellular radio access network with deep learning,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2019, pp. 429–434.

[7] L. Wang, W. Chen, W. Yang, F. Bi, and F. R. Yu, “A state-of-the-art
review on image synthesis with generative adversarial networks,” IEEE
Access, vol. 8, pp. 63 514–63 537, 2020.

[8] R. Wang, Z. Fang, J. Gu, Y. Guo, S. Zhou, Y. Wang, C. Chang, and
J. Yu, “High-resolution image reconstruction for portable ultrasound
imaging devices,” EURASIP Journal on Advances in Signal Processing,
vol. 2019, no. 1, pp. 1–12, 2019.

[9] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 4681–4690.

[10] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1125–
1134.

[11] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in European conference on computer
vision. Springer, 2016, pp. 694–711.

323
Authorized licensed use limited to: University of Oklahoma Libraries. Downloaded on October 25,2022 at 21:05:07 UTC from IEEE Xplore.  Restrictions apply. 


