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Abstract—The evolution of wireless cellular networks to sup-
port Digital Twins (DTs) requires robust propagation models.
Traditional propagation modeling methods, though fundamental,
lack the realism, completeness, and computational efficiency
required for effective DT synchronization. This inadequacy
underscores the need for models that can seamlessly integrate
with real-world network dynamics. Therefore, this work critically
examines the resilience of conventional machine learning based
models and highlights their vulnerabilities to data scarcity and
the inherent dynamism of wireless networks. To address these
challenges, we propose an innovative approach that leverages a
multi-stage GAN for the generation and augmentation of tabular
synthetic data, coupled with an Attention through Segmentation
training strategy. This strategy is based on partitioning the data
distribution based on the histogram of important features and
replacing the single complex model with multiple simpler models
focused on specific parts of the histogram. This dual approach
significantly improves the resilience of the model, and our
evaluations in realistic scenarios show an impressive recovery of
more than 90% performance loss compared to traditional models
and this improvement is achieved with a notable reduction in
model complexity. Our research marks a significant advancement
in the development of resilient and efficient propagation models
for the next generation of wireless networks.

Index Terms—Propagation Modeling, Digital Twins, Resilience
Analysis, Data Augmentation, Attention through Segmentation.

I. INTRODUCTION

Digital Twin (DT) is envisioned to play a pivotal role
in the advancement of emerging cellular networks. A DT
is a software replica of the mobile network that facilitates
continuous prototyping, testing, and optimization [1], [2]. For
example, DT can be used to analyze performance and assess
the impact of new services on existing ones [1]. These are use-
ful for two main purposes: (1) teaching AI systems to handle
situations where real networks have limited available data for
experimentation and solution design, and (2) evaluating and
improving new AI solutions before their implementation in
real networks, which is otherwise a more risky undertaking [1],
[2]. A key element in the advancement of DT creation involves
modeling the propagation of the wireless network, which must
embody key characteristics such as realism, computational
efficiency, and seamless integration with the physical wireless
network of the real world [2].

Traditional propagation models, including empirical, deter-
ministic, and stochastic, fail to comply with the aforemen-
tioned key characteristics of DTs. For example, the realism

in propagation models is realized through deterministic sim-
ulations based on ray-tracing [3]. However, such simulations
are highly computationally inefficient, especially when taking
into account the temporal dynamic nature of wireless sys-
tems. This makes the integration of such models with real
networks infeasible. On the contrary, empirical and stochastic
approaches such as COST-Hata and ITU-R P.453-15 [4],
although computationally efficient, deviate from the realistic
physical and geographic structure of the environment [3]. In
response to the limitations of traditional propagation models,
data-driven Machine Learning (ML) techniques and Deep
Neural Networks (DNNs), which make use of large-scale
datasets, are emerging as promising solutions [5], [6].

A. Related Work

The exploration of ML in wireless network propagation
modeling and pathloss prediction research has covered mul-
tiple environments and methodologies [7]–[10]. In particular,
[7] validates the use of DNNs for the prediction of pathloss
in macrocells and different terrains, while [8] improves the
design of ANN through a composite differential evolution
algorithm, leading to better prediction accuracy. The inte-
gration of environmental factors into pathloss models using
learning machines and DNN is detailed in [9], highlighting
the importance of such features for heterogeneous networks.
Furthermore, [10] emphasizes not only accurate prediction of
network coverage but also model interpretability, which is
crucial for practical applications. Advances in 3D propagation
modeling by [3] tackle complex spatial dynamics and combine
AI interpretability with comprehensive 3D modeling, propos-
ing sophisticated tools for autonomous network planning.

Despite these advances, machine learning-based propagation
models face significant challenges, mainly due to the scarcity
of diverse large-scale datasets [11]–[13]. This scarcity, coupled
with data imbalance and representation issues, can cause the
models to inclined toward a particular propagation environ-
ments, such as urban propagation patterns, undermining their
effectiveness in rural or varied terrains. This phenomenon,
known as the distribution shift, poses a substantial challenge
to the generalizability of the model [14], which requires the
development of models that can adapt and perform in a wide
spectrum of environments [11].

The concept of distribution shift is studied across different
data types and generalization strategies [15], [16]. For exam-



ple, advances in meta-learning, methods based on Generative
Adversarial Networks (GANs), and ensemble learning offer
promising avenues for improving model resilience to distribu-
tion shifts [17]. However, these strategies often overlook the
unique challenges of wireless networks, such as the intricacies
of channel dynamics and operational parameters. The current
literature suggests a research gap in data-driven propagation
models that are resilient to realistic scenarios and distribution
changes, tailored for emerging wireless networks [17]. This
gap underscores the need for dedicated efforts to develop
ML-based models that effectively address the nuances of
wireless network propagation, ensuring robust performance
across diverse conditions and environments.

B. Contributions

To address the gaps mentioned above, this study aims to
address data-driven propagation modeling for 5G and beyond
networks and proposes a robust and resilient ML model train-
ing framework for real-world network environments that have
distribution shifts, unrepresentative data, and data scarcity. The
key contributing points are summarized here.

• We propose a noval data-driven propagation modeling
framework to effectively predict the Reference Signal
Received Power (RSRP) with respect to network environ-
ment features, even when facing practical scenarios with
test data distributions vastly different from that of training
data, ensuring resilience against unseen scenarios.

• This model resilience-enhancing approach is twofold, first
using a Conditional Tabular GAN (CTGAN) to augment
the training data and get a balanced distribution of
key features. This step provides foundational robustness,
preparing the model to deal with real-world Non-Identical
Distributions (NID), and helps to prevent mode collapse.
Then, we apply an Attention through Segmentation (AtS)
strategy by training simpler models for distinct data seg-
ments, thereby improving focus on specific data ranges
and enhancing the model’s capability to identify localized
patterns and increase model accuracy.

• The framework promotes rapid convergence by inte-
grating a Multi-stage GAN (MGAN) that benefits from
weight transfer from a pre-trained DNN to a conditional
GAN generator. This strategy accelerates the optimal
weight-finding process during training, offering an ad-
vantage over traditional GANs, which start with randomly
initialized generator weights.

• We rigorously evaluated the quality of the synthetic
data produced by MGAN versus conventional GANs
using various metrics. Furthermore, we compare the
performance of our AtS method with baseline models
in different realistic test scenarios, exploring the balance
between the performance of the Root Mean Square Error
(RMSE), the complexity of the model, and the conver-
gence time. Our findings indicate a significant recovery
from performance loss, over 90%, and a reduction in the
GAN convergence time of approximately 50%, compared
to traditional methods.

II. PROPOSED FRAMEWORK OVERVIEW

The proposed framework comprises five interconnected
modules, as illustrated in Fig. 1. In Data Collection module
(M1), model training and test data are acquired from real
operator networks or network simulations. This data is fed
into the Model Training module (M2), which focuses on
training various Machine Learning (ML) models, along with
preprocessing tasks, feature scaling, and optimizing hyperpa-
rameters optimization. The trained models then undergo re-
silience testing in the Model Resilience Testing module (M3) to
validate performance against both ID and NID test scenarios.
The performance of a model is considered unsatisfactory if
the RMSE performance differs significantly, > 25% in our
analysis, between the ID and NID tests.

In the cases of poor performance of the model, the frame-
work moves to the module New Data Generation and Augmen-
tation (M4) module for data augmentation, employing GANs
for synthetic data generation and integration with original
data. The final module, Attention through Segmentation (M5),
focuses on data-dependent model selection, facilitating the
training of simpler attention models in specific bins of the
histogram. One of its blocks stores the trained models along
with the basic data statistics (range and mean) used for train-
ing. During inference, these statistics help map the test data to
the most appropriate models for predictions. The intricacies of
each module are explored in detail in the following sections.

III. RESILIENCY ANALYSIS OF EXISTING MODELS

Before delving into the details of model resilience analysis
carried out in this work, we discuss the data collection and
feature engineering to get the right data used for training these
model under consideration for resilience analysis.

A. Data Collection and Feature Engineering: (M1 in Fig. 1)

A realistic commercial planning tool based on ray trac-
ing is used to create a sophisticated network topology and
generate multiple raw data sets [3]. The network topology
incorporates actual antenna heights, geographic data (ground
heights, building heights and land use maps), and the Aster
propagation model [18]. The raw data set comprises data
relevant to signal propagation, collected from the commercial
planning tool, and classified into three main groups: (1) site-
specific information (including location and antenna details),
(2) geographic information (encompassing terrain, building,
and land cover data), and (3) user measurements (comprising
RSSI, location, and network information)1. Feature engineer-
ing is critical to improve the performance of machine learning
models. Therefore, in our study, using domain knowledge, we
transform raw site-specific, geographic and user data from
BS into relevant characteristics, including distances, clutter
information, penetrations of buildings, diffraction points and
angular separations between BSs and users1.

1For more details about these datasets refer to Section II-C of [3].
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Fig. 1: The proposed framework for the resilience analysis of data-driven propagation models (M1-to-M3), and resilience
enhancement of these models using CTGAN based data augmentation (M4) and Attention through Segmentation (M5).

B. Model Resilience Analysis (M1-to-M3 in Fig. 1)

To test the resilience of the model, we use sensitivity anal-
ysis to select the high impact features and their distributions
to select the NID test cases.

1) SHAP-based High Impact Features’ Distributions: The
Shapley Additive Explanations (SHAP) concept is used to
quantify the contribution of individual characteristics to the
prediction of ML models. We applied the LightGBM model,
a prevalent choice in propagation model research, to perform
the SHAP analysis of the features. This analysis identifies
three main features, given in descending order of importance
here: Distance (F1), Indoor Path (F2), and BS-Azimuth (F3).
Our findings indicate that the F1 feature exhibits a positive
skew, with a notable concentration of user equipment ap-
proximately 500 meters from the base stations. The Indoor
Path feature follows an exponential distribution, predominantly
representing shorter distances and suggesting that a majority
of signals traverse minimal indoor distances or obstructions,

Fig. 2: RMSE performance of ML models for identical, uniform, and
two realistic non-identical test scenarios, where test data is sampled
from the upper and lower sides of the distribution of relevant features.

with zero values indicating direct line-of-sight conditions. The
BS Azimuth exhibits a bimodal distribution that highlights the
variability in BS orientations. To analyze the resilience of the
model, we discretize these feature distributions into histograms
with bin sizes of BS (6, 12 bins), defining NID scenarios using
test data from the extremities of the histogram.

2) Model Testing against Various Test Scenarios (M3):
Leveraging SHAP-identified features, we evaluate the re-
silience of the model in realistic scenarios, focusing on consis-
tency of performance in changes in data distribution. For this
purpose, we use the Catboost and DNN models to evaluate
performance in various test scenarios, with results depicted in
Fig. 2. Four different test scenarios are examined; Identical
(ID), uniform (equal representation from different bins of the
histogram), and NID (Lower Side and Upper Side) scenarios
featuring test data exclusively from the histogram extremities.
Initial findings indicate a comparable performance between
DNN and Catboost in ID and uniform cases, as depicted in
Fig. 2. However, performance notably declines under NID
conditions, underscoring a resilience gap in current ML models
and the need for improved model resilience strategies.

IV. CTGAN BASED DATA AUGMENTATION (M4) AND
ATTENTION THROUGH SEGMENTATION (M5)

A. Novel Data Generation Approach (M4 in Fig. 1)

The M4 module in Fig. 1 aims to create synthetic tabular
data, a task more challenging than typical image augmen-
tation through GANs, due to various types of feature and
distributions of tabular data features and correlations between
them. CTGAN is a specialized GAN architecture engineered
to address the complexities of generating tabular data. For
our problem of data generation for distribution balancing, we
propose improvements in CTGAN, discussed in the following.

1) Proposed Improvements in CTGANs: Our data gener-
ation approach includes two improvements in the CTGAN



training and data generation phases. First, the CTGAN is
initialized with the weights from a pre-trained DNN model
in M2. Doing so speeds up the convergence of CTGAN and
helps avoid modal collapse, without compromising the quality
of generated data. Then, we propose an iterative approach
to condition all available values in a particular bin of the
histogram, and a mathematical formulation to manage the
count of each conditioned value, processed in the Conditional
Generation block of the data generation phase in M4. This
also involves the Data Evaluation block, which evaluates
the quality of the generated data by comparing it with the
respective test data, using various performance evaluation
metrics [19]. Synthetic data is enhanced with original data only
if it has Satisfactory Performance (SP), measured by applying
a threshold to GAN evaluation metrics, such as the quality
score and the coverage report [19], see Section V-B.

2) Mathematics of Feature Distribution Balancing: The
number of values that need to be augmented to make a
histogram bin similar in size to other bins depends on various
factors, such as the underlying distribution of features, the
number of bins in the histogram and the overall size of the
data. If we have a dataset of size Dl values and due to the
underlying distribution, its most important features can have
some bins with sufficiently high values count, while other bins
with very few values. For a given bin size Bs, we define the
balance threshold Bt = Dl/Bs, as the minimum value count
for each bin so that it can be considered balanced. For a given
bin bi, where i ∈ Zs where Zs = {x ∈ Z | 1 ≤ x ≤ Bs}, the
count of a particular feature F in bi is shown by Vi, and the
number of all bins with Vi < Bt termed Low-frequency Bins
(LfB) is shown by N l

b. Therefore, depending on the difference
in N l

b and its individual values |Bt − Vj |, where j ∈ Zl and
Zl = {x ∈ Z | 1 ≤ x ≤ N l

b}, we determine the total count
of additional values, Nv

g =
∑N l

b

k=1 |Bt − Vk| required to make
LfB more balanced and representative.

3) CTGAN Implementation in Synthetic Data Vault (SDV):
We leverage the CTGAN implementation from the SDV
library, a versatile GAN capable of handling mixed data types
and imbalanced datasets [20]. CTGAN employs a conditional
sampling approach, enabling data generation post-training
without predefined conditions. It aims to accurately model
the data distribution, grasping intricate inter-feature relation-
ships and fostering a model adaptable to conditions applied
during sampling. This approach offers several advantages, for
example, generating diverse datasets from a single model and
providing a cost-effective solution to manage data variances.

4) CTGAN Data Balancing Capabilities and Limitations:
Despite CTGAN’s capabilities, it cannot fully balance the
histogram bins, especially those that contain very lower values
for conditioning. The upper half of Table I shows the number
of LfB in the original and augmented data for three features.
We have defined a parameter, PoLfB, which stands for the
‘Proportion’ of values present in LfB to the overall data size,
and data augmentation impact is represented by the change
in PoLfB and NoLfB values as we transition from original to

augmented data rows for a given bin size and feature. Although
CTGAN effectively increases PoLfB to a maximum value of
0.999 for F1 and F3, for F2, it reaches 0.840. This is because
some bins of the F2 histogram have very low values and the
GAN conditioning is limited by the values in a particular bin.

B. AtS: Attention through Segmentation (M5 in Fig. 1)

Now we move on to the proposed AtS approach, focusing on
its motivational and foundational aspects, and implementation
of the AtS module (M5) in the proposed framework in Fig. 1.

1) Motivation and Implementation of AtS: We employ
the AtS scheme to improve the resilience and precision of
the model, training multiple specialized models on different
data segments instead of a single complex model [21]. This
method improves the efficiency and precision of the regression
model training by focusing on specific value ranges, ensuring
robustness and reducing computational load. In the AtS mod-
ule (M5), models are trained according to the width of the
histogram bin, with k ML models covering each of the bins
N/k, where k is a factor of N . This approach ranges from
a conventional single model (k = 1) to one model per bin
(k = N ), allowing for adjustable attention levels.

2) AtS Module in Proposed Framework: The M5 module’s
Augmented Data Dependent Model Selection block plays a
crucial role in identifying the optimal model for specific
augmented data segments, considering bin size, attention level,
and feature distribution. Concurrently, the Attention Models
block is tasked with devising the architecture for various
attention models as per the Model Selection block’s directives.
Once selected, a model undergoes training for its designated
data segment, with the STMwS (Save Trained Model with
Statistics) storing the model along with its training data
statistics. In the inference phase, these pre-trained models and
their statistics in STMwS are leveraged for RMSE prediction
on new test data, ensuring the selection of suitable models
through a comparison of stored and test data statistics.

Table I: Comparison of GAN data generation and convergence:
NoLfB (PoLfB): Number (Percentage) of Low-frequency Bins, GCI:
GANs Convergence Iterations, DGT: Data Generation Time.

F1: Distance F2: Indoor Path F3: BS Azimuth
Data Type NoLfB/PoLfB NoLfB/PoLfB NoLfB/PoLfB

GAN Data
Generation

Orig. Data 3/0.745 4/0.495 2/0.841
Aug. Data 0/0.999 1/0.840 0/0.999
GAN Type GCI/DGT GCI/DGT GCI/DGT

GAN
Convergence

LGAN 289/1615 323/1870 183/1254
MGAN 188/1574 201/1988 128/1199

V. SIMULATION SETUP AND PERFORMANCE EVALUATION

In this section, we discuss the experimental setup, evalua-
tion of GAN-based data generation, and proposed AtS based
approach to improve the resilience of propagation models.

A. Experimental Setup

Using the Atoll commercial planning tool [18], based on
3D ray tracing, we simulate a 3.8 sq. Km network in central
Brussels, Belgium, with 10 macrocell base stations, detailed in
Table II. The area is divided into bins to calculate the average



Table II: Network simulation parameters with their values.

Parameters Values
Network layout 10 macrocell sites
Number of users in simulation area 10000 users
Path loss model Aster (ray tracing)
BS maximum transmit power 43dBm
BS antenna gain 18.3 dBi
Channel bandwidth 5 MHz
Size of the simulated data 300 K
Training and test data size 150 K
Generator hidden layers shapes [64, 64, 64, 64, 64]
Discriminator hidden layers shapes [64, 64, 64, 64, 64]

RSRP values per bin of 10K Poisson distributed users. This
data set includes 9 features, 1 target variable (RSRP), and
300K instances, with 150K reserved for testing. Different sizes
of test data are derived from this set for scenarios M2, M3,
and M4. For DNN, we use 120K instances for training, 30K
for validation, and sample another 30 K from the test set. The
GAN training dataset matches this, but the testing datasets
are adjusted to ensure fair evaluations due to the variable
generated dataset sizes based on features and bin dimensions.

B. GAN Data Generation Performance Evaluation

The effective use of GANs depends on evaluating their
data generation performance, which we assess using two key
metrics: the ‘quality score’ and the ‘diagnostic report’ [19].
The quality score focuses on the precision of the generated
data by examining the shapes of individual columns and the
pairwise trends, while the diagnostic report provides a broader
evaluation, considering the coverage, synthesis, and limits of
each column (see [19] for more details). Both GANs exhibit
comparable quality scores, the proposed MGAN outperforms
the LGAN in quality score and in the synthesis of unique
values, as shown in Fig. 3. Although the coverage and bound-
ary metrics are slightly better for LGAN, they are significantly
higher and comparable for MGAN, suggesting that both GANs
can generate high-quality data.

Analyzing convergence performance (see Table I), MGAN
shows superiority over LGAN in the GAN Convergence Iter-
ation (GCI) and data generation time (DGT), benefiting from
modified training and initial weight transfer. The significant
improvement in GCI and DGT, especially for features like
F2: Indoor Path, is indicative of the GAN’s ability to bridge
the gap in data augmentation, with the gap reduction in PoLfB
quantified as 0.840− 0.495 = 0.345 for F2 in the upper half
of Table I. Trends in these metrics, along with performance
in other features such as F1 and F3, provide information on
the effectiveness of GAN-based approaches in improving data
representation and without compromising on its quality.

C. Evaluation of Proposed AtS Methodology

The performance of the proposed AtS schemes with varying
depth of attention levels is shown in Fig. 4. Here, A01M is
similar to conventional training, where no segments are made
and only one model is trained for the entire data range; hence
it becomes our baseline. Similarly, for Bs = 6, A02M has 2
models that span 3 bins each and A03M has 3 models that span
2 bins each. Fig. 4, a stacked grouped bar graph, shows all

Fig. 3: GAN quality comparison for both LGAN and MGAN.

Fig. 4: Testing the RMSE performance for baseline (A01M)
and AtS models (A02M, A03M, A06M) for BS = 06.

Fig. 5: Trade-off between model complexity shown as num-
ber of parameters (NoP), improved resiliency (RMSE im-
provements), and convergence performance for BS = 12.

possible levels of attention for BS = 6, each attention level
showing 4 different test cases, and each test case shows a
stacked bar representing the RMSE values for three important
characteristics under consideration.

1) DNN Models RMSE Comparison on Augmented Data:
An analysis of all features reveals that the proposed AtS
approach is effective, as performance (or RMSE) improves as
the models become more specialized, from A01M to A06M.
This is especially evident in NIDs such as “LS: lower side”,
where the RMSE decreases for all three features, for example,
from 27.90 in A01M to 6.57 in A06M for Distance feature,



indicating the potential robustness of AtS-based specialized
models. The consistent decrease in RMSE in all test scenar-
ios suggests the potential benefit of the AtS-based localized
specialized training approach. When looking at the individual
features, each has its nuances and trends. For example, for a
given NID test scenario, the Distance feature shows a steady
and consistent decrease in RMSE in all attention cases and
test scenarios, suggesting a consistent advantage of AtS-based
training. However, when considering the features of Indoor
Path and BS Azimuth features, the rate of reduction of RMSE
from A01M to A06M is more abrupt in a certain NID test
case. This variation in RMSE for different features is mainly
related to their distribution variety and their importance order
in model prediction.

2) Model Parameters and Performance Trade-Offs: This
analysis explores the correlation between the complexity of
the AtS model (manifested as NoP: Number of Parameters),
Average Convergence Iterations (ACI), and RMSE (Fig. 5).
Focusing on a bin size BS = 12 and a consistent size of
the DNN model, the study finds that specialized attention
schemes reduce NoP and improve RMSE performance, in-
dicating efficient model learning with lower complexity. The
best performance is achieved with A12M, using only param-
eters 5316 per DNN model, totaling about 60K parameters,
significantly less than the baseline of 130K. Although AtS
depth/level decreases ACI, suggesting faster learning, a trend
shift occurs where higher attention levels lengthen the DNN
model convergence. A12M shows ACI values approximately
twice those of the baseline, but improves resilience without
overburdening training. The suitability of AtS for parallel
training effectively addresses these higher ACI values.

VI. CONCLUSION AND FUTURE WORK

In this article, we quantify and address key issues in current
propagation modeling to enable digital twins, that is, lack of
resilience caused by distribution shift and data scarcity issues
in wireless networks. We achieve resilience against realistic
test-case scenarios by proposing a framework that uses GAN-
based data augmentation to balance the distribution of influ-
ential features and attention through segmentation-enhanced
training to address the performance degeneration issue. We
also introduce a novel multistage GAN module based on
transfer learning to reduce convergence time. Our approach,
compared to the baseline scheme for different realistic test
cases, shows recovery of more than 90% performance loss
compared to its conventional counterpart, with the additional
benefit of reduced model complexity. In the future, our aim is
to extend this work to different data sizes and histogram bins.
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