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Abstract—In the evolving landscape of 5G and forthcoming
6G networks, managing outages becomes increasingly complex
due to higher Base Station (BS) densities and the conse-
quent rise in outage instances. Addressing this, we introduce
a sophisticated, two-tiered outage management framework that
leverages artificial intelligence for enhanced efficiency and au-
tomation. Our approach features an innovative AI-based cell
outage detection strategy, named Impv-XGBoost, which excels
in high-shadowing conditions and with sparse training data,
outperforming traditional methods. The framework’s second tier
employs an actor-critic reinforcement learning scheme for cell
outage compensation, finely tuning compensating BS’s tilt and
transmit power. This method uniquely integrates outage and
compensating base station’s user equipment coverage, ensuring
equitable service quality. By incorporating Jain’s fairness index
and the geometric mean in its reward mechanism, our approach
achieves fair and efficient outage management, demonstrating
notable improvements in user coverage during BS outages.

Index Terms—Actor-critic, Reinforcement Learning, Self-
Healing, Outage Detection and Compensation, Jain’s Fairness
Index, Geometric Mean.

I. INTRODUCTION

The data-driven applications and 5G and Beyond (5G&B)
wireless technologies have significantly increased the com-
plexity of cellular networks, evolving from 2G to 5G. This
complexity arises from the integration of advanced tech-
nologies, a surge in adjustable network parameters, and an
increase in heterogeneous Base Station (BS) deployments [1].
Consequently, there is a pressing need for more automated and
intelligent network management strategies. Self-Organizing
Networks, as defined by 3GPP [2], provide a solution by
promoting autonomous network management throughout the
network’s life cycle, including deployment, optimization, and
maintenance. Notably, self-healing functions, such as Cell Out-
age Detection (COD) and Cell Outage Compensation (COC),
play a critical role in addressing operational issues [3].

The advent of 5G and subsequent generations introduces a
paradigm where traditional self-healing approaches, such as
software updates, network monitoring, and hardware expan-
sions, are insufficient. The complexity of these networks, char-
acterized by their architectural heterogeneity and the vast array
of connected devices and applications, challenges the efficacy
of existing SON-based self-healing strategies. For instance,
identifying ‘sleeping cells’—outages caused by hardware or
software failures—becomes particularly challenging without
the aid of operational and maintenance alarms. Ensuring

prompt detection of such outages and implementing effective
compensation measures, without impairing the functionality
of operational network components, is crucial for maintaining
network integrity in the 5G era and beyond [4], [5].

To tackle the challenges in outage management, Artificial
Intelligence (AI) is increasingly utilized to improve detec-
tion and compensation mechanisms. AI methods, leveraging
Minimization of Drive Test (MDT) data, effectively identify
anomalies in MDT reports from User Equipment (UE) within
an affected base station’s coverage, aiding in swift outage
localization and repair. Furthermore, AI-driven compensation
techniques, especially those using Reinforcement Learning
(RL), adjust neighboring base stations’ parameters to lessen
outage impacts on users. These strategies focus on enhancing
service quality for impacted UEs, using key performance
indicators like Reference Signal Received Power (RSRP) or
Signal-to-Interference-plus-Noise ratio, focusing AI’s role in
bolstering self-healing network capabilities [6], [7].

A. Related Work

The literature on cell outage management plays a crucial
role in bolstering the robustness and reliability of 5G&B
networks, traditionally segmented into three main areas: COD,
COC, and integrated strategies addressing both COD and
COC. COD research bifurcates into non-AI methodologies,
which, despite their abundance, are hindered by a reliance on
extensive manual analysis, rendering them less feasible for
the dynamic and intricate 5G&B environments. The transition
towards AI-based COD techniques, such as the dynamic
affinity propagation clustering algorithm [8] and K Nearest
Neighbor (KNN) based anomaly detection [9], represents a
significant advancement towards automating outage detection.
However, these AI-based solutions encounter challenges in
high shadowing or limited training data scenarios, emphasizing
the need for enhanced research efforts in this domain.

For COC the evolution from traditional to AI-infused strate-
gies, especially leveraging deep reinforcement learning for
dynamic parameter adjustment, marks a pivotal shift. Notable
is the introduction of a deep RL framework for COC in
ultra-dense networks utilizing Q-learning [10]. Despite these
advancements, AI-driven COC methodologies have yet to fully
tackle the challenge of ensuring user fairness, often sidelining
the equitable allocation of network resources among users
affected by outages. Efforts to amalgamate COD and COC



under a unified framework are in their infancy but are deemed
essential for the development of all-encompassing outage man-
agement solutions. Preliminary studies [7] and [11], apply ma-
chine learning for both detection and compensation and pro-
vide a foundation. Nevertheless, these integrated approaches
frequently overlook the collective performance impact on users
during an outage or the scalability challenges associated with
compensating multiple base station failures, underlining the
necessity for scalable and adaptable integrated solutions.

Current research highlights significant gaps, notably in
crafting AI-based COD solutions adept at navigating issues
of shadowing and sparse datasets. Moreover, the development
of COC schemes that prioritize user fairness and the amal-
gamation of COD and COC into a comprehensive framework
remains paramount. These insights drive the motivation for
our proposed work, aiming to establish a nuanced, effective,
and equitable outage management strategy that addresses
the limitations outlined in existing literature, thus advancing
outage management capabilities within 5G&B networks.

B. Proposed Approach and Contributions

This study presents a streamlined, dual-layer framework
targeting the critical aspects of COD and COC within high-
shadowing and data-sparse environments. Illustrated in Fig.
1, the framework enhances detection accuracy and employs
reinforcement learning for COC, optimizing compensating BS
(cBS) settings for optimal UE service restoration. It introduces
an innovative reward system, utilizing Geometric Mean (GM)
and Jain’s fairness Index (JFI), to guarantee fair UE treatment.
• Enhanced COD with Impv-XGBoost: We intro-

duce an improved XGBoost algorithm, termed Impv-
XGBoost, optimized with a specific scale-pos-weight
hyper-parameter for distinguishing between normal and
outage conditions. This method significantly outperforms
existing models in high-shadowing scenarios and with
sparse MDT data, showcasing superior detection capa-
bilities under challenging conditions.

• Novel COC Strategy Using SARL-AC: A novel Single-
Agent Reinforcement Learning with Actor-Critic (SARL-
AC) method is proposed for outage compensation. This
approach aims to restore the RSRP for UEs affected by
an outage (oUEs) by optimally adjusting the antenna tilt
and transmit power of the compensating BS. It uniquely
considers the RSRP distribution of both oUEs and the
cBS’s originally served UEs (sUEs) in the feedback and
reward mechanisms, ensuring the compensation process
does not negatively impact the sUEs’ service quality.

• Advanced Reward Calculation for Fairness: The re-
ward function is refined by integrating Jain’s fairness
index and the geometric mean of RSRP values, enhanc-
ing the fairness of UE compensation. The incorporation
of this index improves convergence time, while GM
minimizes fluctuations in the learning process without
significantly affecting convergence speed.

These contributions collectively address the existing gaps
in outage management by providing a robust solution that

ensures high detection accuracy, effective compensation, and
fair treatment of UEs in 5G and beyond cellular networks.

Rest of the paper is organized as following. In Section II, we
discuss the network model and proposed outage management
framework, whereas the outage detection and compensation
mechanisms are discussed in Section III. First subsection of
Section IV, discusses the proposed outage detection schemes
using ML based anomaly detection methods, while the second
subsection is focused on employing RL based outage com-
pensation. Section V, discusses the simulation setup, outage
detection performance, and outage compensation results in
three different subsection, and Conclusion and Future Works
are discussed in Section VI.

II. NETWORK MODEL AND PROPOSED FRAMEWORK

This section outlines the network model under consideration
and introduces a novel two-tier outage management framework
aimed at addressing outage detection and compensation within
a 3GPP-compliant wireless network environment.

A. Network Model

Our study is based on a 3GPP-compliant wireless network
model, comprising macro-cells divided into three sectors, each
equipped with one directional antenna. The model adheres
to the LTE standard for scheduling and physical resource
block allocation in each transmission time interval. Users
are randomly deployed and associated with the base station
offering the highest RSRP, following a predefined trajectory.
The model utilizes a free-space path loss model augmented
with Gaussian-distributed shadowing for RSRP calculation.
The network area is segmented into bins of size 10m× 10m,
with an assumption of constant shadowing standard deviation
within each bin. Outage scenarios are simulated by selectively
disabling BSs, thereby affecting the RSRP values for associ-
ated UEs, which necessitates compensation measures to restore
service quality. This model underpins the data generation,
COD, and RL-based cell COC solution implementations.

B. Proposed Outage Management Framework

The proposed framework is structured around two main
modules: outage detection and localization, and outage com-
pensation, as depicted in Fig. 1.

1) MDT Data Collection: In line with 3GPP standards [12],
UEs are configured to report radio measurements, including
RSRP and Reference Signal Received Quality (RSRQ) values,
from serving and neighboring cells. These measurements,
alongside user location and channel quality indicator values,
are compiled in the trace collection entity for subsequent
analysis. The collected MDT data facilitates various big data-
enabled self organizing functions such as mobility robustness
optimization and load balancing, particularly focusing on
machine learning-based outage detection mechanisms [13].
The MDT data, forming a concatenated feature vector V =
{Rs, Rn1 , Rn2 , Rn3 , Qs, Qn1 , Qn2 , Qn3 , c} ,: where Rs and
Qs denote the RSRP and RSRQ from the serving base
station, Rni

and Qni
represent these values from the top three



Fig. 1: The outage management framework illustrating machine learning-based outage detection using minimization of drive test data and
actor-critic reinforcement learning for outage compensation. It includes modules for Data Collection, an Anomaly Detection, where machine
learning models are trained on normal scenario data, and tested on outage data. It also includes a Localization module, where outage area
is figured out and compensating base station is determined. The Outage Compensation module employs deep neural network, and actor
critic based reinforcement learning mechanisms to adjust compensating base stations’ parameters, enhancing service for affected users.

neighboring base stations, and c denotes the channel quality.
The generation and utilization of MDT data in both normal and
outage scenarios underpin the training of anomaly detection
models and the operational efficacy of the outage detection
and compensation modules within the framework.

2) Outage Detection and Compensation Modules: This
module is crucial for detecting outages through the analysis
of deviations in MDT data generated under outage condi-
tions. The anomaly detection models, discussed in detail in
subsection III-A1, trained on normal scenario data, identify
significant variations that indicate outages, enabling precise
localization and effective response strategies. Following out-
age detection, the framework’s focus shifts to compensation,
leveraging an actor-critic RL technique to adjust compensat-
ing BS parameters, such as power and antenna tilt, without
compromising service quality for UEs initially served by the
compensating BS as shown in Fig. 1. This module embodies
a comprehensive approach to outage management, integrating
deep learning techniques in both detection and compensation
processes to ensure network resilience and service continuity.

III. OUTAGE DETECTION AND COMPENSATION

This section delves into the details of COD and COC
components of our framework, which involve the traditional
unsupervised methods with advanced techniques for efficient
outage identification and RL based outage compensation.

A. Outage Detection Mechanism

1) ML based Anomaly Detection Schemes: We explore
conventional unsupervised methods like One-Class Support

Vector Machine (OC-SVM) and Autoencoder (AE), alongside
supervised approaches such as KNN and an enhanced version
of Extreme Gradient Boosting (XGBoost), termed Improved
XGBoost (Impv-XGBoost), which excels in scenarios with
limited training data and reduces training time.

• One-Class Support Vector Machine (OC-SVM): OC-
SVM, a prevalent method in anomaly detection, trains
solely on normal class data and tests against mixed data to
identify anomalies [14]. It leverages a non-linear function
to map input data to a higher dimension, establishing a
non-linear boundary for improved data separability.

• Autoencoder (AE): AEs are neural networks designed
to compress input data into a lower-dimensional space
and then reconstruct it. They are evaluated based on
the reconstruction error between the original and recon-
structed data. For outage detection, AEs are trained with
normal data and tested with mixed data, where high
reconstruction errors indicate potential outages.

• K-Nearest Neighbor (KNN): KNN, a straightforward
classification algorithm, is ideal when data distribution
is unknown. It calculates the distance between a test
instance and training samples, often using Euclidean
distance, and classifies the test instance based on the
majority vote from its K nearest neighbors. For skewed
distributions, a weighted classification method prioritizes
closer neighbors in the decision-making process.

• Extreme Gradient Boosting (XGBoost, Impv-
XGBoost): XGBoost is known for its computational
efficiency and high performance in binary classification
tasks, thanks to its resistance to overfitting and
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Fig. 2: Confusion matrices for the comparing schemes with 4dB of shadowing and 300 users per sq. km.

parallelization capabilities [15]. The Impv-XGBoost
adaptation for detection employs hyperparameter
optimization, using the AE output to fine-tune the
scale-pos-weight parameter to get the idea of class
distribution in training data.

2) Cell Outage Detection: Utilizing minimization of drive
test data, our approach models a fault-free network scenario
for outage detection, paralleling anomaly detection techniques
like credit card fraud detection [16]. Machine learning models
trained on this baseline data identify outages by detecting
anomalies, characterized by unusually high prediction errors.
Feature vectors are adjusted using a robust scaler to enhance
model resilience against outliers. The evaluation focuses on
three baseline methods and enhanced XGBoost models, ex-
amining their performance in diverse conditions. The effec-
tiveness of our proposed method, particularly in handling
shadowing and data sparsity, will be detailed in Section IV-B.

B. Outage Compensation Approaches

Addressing cell outages effectively requires not only precise
detection and localization but also a robust compensation
mechanism. This subsection presents our proposed RL-based
compensation solution, focusing on utilizing a compensating
base station to restore service for affected UEs.

1) Reinforcement Learning Background: RL underpins our
approach, involving concepts such as agents, environments,
states, actions, rewards, policy, and value functions, as outlined
in Fig.1. RL’s goal is to train agents to optimize actions in
an environment to maximize cumulative rewards, based on
the Markov decision process framework, defined by a tuple
D = [S, A, P (s|s, a), r, γ]. Here, S and A represent the sets
of states and actions, respectively, P (st+1j|sti, al) denotes the
probability of transitioning from state si to sj upon action
al, r(s, a) is the immediate reward and γ is the discount
factor emphasizing the value of future rewards. RL involves
training an agent, in this context, a cBS, through interactions
within its environment aimed at sequential decision-making.
Formally, an RL problem is articulated through the Markov
decision framework, emphasizing the importance of learning
optimal policies for action selection to maximize long-term
rewards. This is captured by the state value function Vπ(s) =
E {

∑∞
t=0 γ

tr(st, π(s))|st = s}, where Vπ(s) represents the
expected future rewards from state s under policy π, and π is
the optimal policy maximizing these rewards.

The actor-critic method merges policy-based and value-
based RL strategies, facilitating direct learning from experi-
ence via temporal difference methods. It consists of an actor-
network, learning the policy, and a critic network, evaluating
the actions based on the learned policy. This method ensures
a balanced exploration of the action space and exploitation
of the gained experience, guiding toward optimal reward
accumulation.

The use of MDT reports is crucial not only for detecting
outages but also for selecting a suitable cBS and catego-
rizing UEs for effective compensation. MDT data, enriched
with UE location information, aids in localizing the outage
and identifying potential cBS based on coverage potential.
UEs affected by the outage UEs and those served by the
compensating BS i.e., sUEs are distinguished for tailored
compensation strategies, ensuring service restoration for oUEs
while maintaining quality for sUEs. This nuanced approach
underscores the complexity of outage compensation, necessi-
tating sophisticated RL models to balance service restoration
with network stability.

2) SARL-AC: Single Agent RL with Actor-Critic: Now we
discuss on employing single-agent reinforcement Learning
with actor-critic method for outage compensation, focusing
on formulating and solving the compensation problem.

The SARL-AC environment consists of key components
defined as follows:

a) State: It is defined by a tuple [Ptx, θtilt, R̄
Xu, R̄Su],

representing downlink transmission power, antenna tilt, and
mean RSRPs of xUEs and sUEs.

b) Action: The action includes four possible actions:
increasing or decreasing antenna tilt and transmission power.

c) Reward: It is computed by employing arithmetic
mean, geometric mean, and Jain’s fairness index of user RSRP
values. The total reward combines these components and
adjusts the actor-critic learning based on temporal difference
error, indicating whether the probability of selecting a current
action should increase or decrease.

The SARL-AC approach integrates actor and critic networks
within a neural network framework featuring shared layers and
distinct output layers for action probabilities and value esti-
mates. Training involves episodes where actions are evaluated
and rewarded, with the actor-network learning to optimize total
rewards and the critic network assisting in action selection.
The training process, including loss calculations for actor and
critic components, aims to enhance overall compensation ef-
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Fig. 3: Comparing the progress of cell outage detection schemes with
varying (1) standard deviation of shadowing and (b) MDT density
(users population) in terms of Matthews correlation coefficient.

fectiveness. The efficacy of SARL-AC in improving RSRP for
affected UEs while maintaining network stability is discussed
in Section IV-C.

Table I: Parameter values for simulations

System Parameters Value
Number of macro Base Stations 9
Number of micro Base Stations 15

Number of sectors per macro Base Stations 3
Number of Users 2500− 15000

Operating frequency of macro Base Stations 2100 MHz
Operating frequency of micro Base Stations 2500 MHz

Bandwidth of macro Base Stations 15 MHz
Bandwidth of micro Base Stations 20 MHz

Transmit power of macro Base Station 43 dBm
Transmit power of micro Base Station 20 dBm

Standard deviation of shadowing 0− 12 dB
Base stations height 30 m

Small Base stations height 10 m

IV. PERFORMANCE EVALUATION

This section evaluates our proposed outage detection and
compensation approaches, detailing simulation parameters and
analyzing performance under different network conditions,
including shadowing and user density variations. We examine
compensation strategies through the SARL framework and a
multi-agent actor-critic RL approach for multiple base station
outages, assessing their effects on RSRP for affected users
(oUEs) and coverage for served users (sUEs). Simulation
setups are elaborated.

A. Simulation Setup

Utilizing a 3GPP-compliant LTE simulator, we generated
MDT data across a 5Km×5Km area served by 9 macrocells
and 16 micro-cells to simulate both normal and outage scenar-
ios, with outage simulated by setting transmit power to 0dBm.
Key simulation parameters are detailed in Table I. We evalu-
ated COD schemes through confusion matrices, and Matthews
correlation coefficient, focusing on their performance under
varying shadowing and MDT densities.

B. Outage Detection Results

The evaluation under a shadowing of 4 dB and user density
of 300 users per sqkm revealed that Impv-XGBoost outper-
formed other models, misclassifying minimal instances. While
OC-SVM showed acceptable performance, its misclassifica-
tion rate was significantly reduced by Impv-XGBoost, even
in higher shadowing conditions as shown in Fig. 3a. The
performance of all models decreased with increased shadow-
ing, highlighting the superior robustness of Impv-XGBoost.
Additionally, increasing MDT density generally improved de-
tection accuracy across all models, particularly for AE due
to its reliance on extensive training data. However, Impv-
XGBoost demonstrated superior performance across different
shadowing levels and MDT densities, indicating its efficacy as
a COD solution even in challenging environments as depicted
in Fig. 3b and Fig. 3c for various conditions. These results
underscore the potential of Impv-XGBoost in providing a
reliable COD solution that excels in high shadowing conditions
with efficient training time, setting the stage for the discussion
on outage compensation solutions in the following section.

C. Outage Compensation Results

In this sub-section, we discuss the progress of the outage
compensation solution based on the SARL-AC algorithm 4.
The labels in each figure show the values of the combination
of rewards in terms of AM (rRA), JFI (rRJ ), and GM (rRG),
respectively. For instance, the combination “210” describes
the case of rRA = 2, rRJ = 1, and rRG = 0, which means
JFI-assisted training is carried out. Along with the arithmetic
mean of RSRP, the rewarding process should include the
fairness mechanism to ensure that the overall mean values
stick to the respective target after convergence. If fairness
is included in terms of GM of RSRP only, it is depicted
with the Rewards-201. Results show a faster convergence
and less fluctuation from the target RSRP compared to the



0 50 100 150 200 250 300 350 400
SARL-AC training episodes

0

50

100

150

200

250

300
Co

m
m

ul
at

iv
e 

re
wa

rd
 p

er
 e

pi
so

de

Rewards-200
Rewards-201
Rewards-210
Rewards-211

0 50 100 150 200 250 300 350 400
SARL-AC training episodes

140

135

130

125

120

115

110

105

100

Av
er

ag
e 

RS
RP

 o
f o

UE
s

target
Rewards-200
Rewards-201
Rewards-210
Rewards-211

0 50 100 150 200 250 300 350 400
SARL-AC training episodes

140

130

120

110

100

90

Av
er

ag
e 

RS
RP

 o
f s

UE
s

target
Rewards-200
Rewards-201
Rewards-210
Rewards-211

Fig. 4: The outage compensation with SARL training considering cUEs (oUEs + sUEs): (a) commutative rewards pattern for different
combinations for training episodes, (b) average RSRP variations to training episodes for different rewards combinations for outage UEs, (c)
average RSRP variations to training episodes for different rewards combinations for served UEs.

200 combination. The outage compensation with JFI-based
rewarding is shown with Rewards-210. This case accelerates
the convergence process and reaches the target values in
the shortest episodes, however, it cannot reduce the random
fluctuations. Finally in the last comparison, both the JFI and
GM based rewarding are used in Rewards-211. This result
strikes a balance in terms of the convergence time and post-
convergence fluctuations minimization.

V. CONCLUSION

This research introduces an AI-based framework for effi-
ciently detecting and compensating network outages in 5G&B
networks. Utilizing the Improved XGBoost (Impv-XGBoost)
model, our approach achieves high detection accuracy under
conditions of significant shadowing with minimal training
data, addressing key limitations of existing algorithms. For
outage compensation, we apply an actor-critic-aided SARL
method, optimizing the network’s response base station fail-
ures. This method carefully balances service restoration for
affected users and coverage maintenance for unaffected users,
employing a reward mechanism that combines the GM and
JFI to ensure equitable treatment across users. Our results
demonstrate the effectiveness of this combined reward strategy
in improving the learning process’s stability and speed. Future
directions include advancing proactive self-healing of multi-
ple base station failures and root cause analysis capabilities
within emerging network configurations, such as unmanned
air vehicles assisted base stations for critical scenarios.
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