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Abstract 

In this paper, a novel Multi-Objective Optimisation (MOO) 
method has been introduced for Self-Organising Networks 
(SONs). Meta-heuristic algorithms based on Simulated 
Annealing (SA) are used to evaluate the Pareto Frontier (PF) 
of UE throughput vs. fairness index in a simulation of 
Coverage & Capacity Optimisation (CCO) use-case in SON-
LTE. We have evaluated the performance optimisation 
methods through the final optimal set of solutions. The 
boundaries of the optimal sets are evaluated as PF and 
compared with the results of the conventional method of 
Multi-Objective Simulated Annealing (MOSA). We have 
detected a Pareto improvement for the estimated PF of the 
proposed method, which outperforms that of MOSA.  

1 Introduction 
Wireless networks have become increasingly complex. This 
complexity is known to be the most limiting factor for future 
developments and this is why the current situation is believed 
to be a complexity crisis [1]. The self-organisation concept, 
originally introduced by Ashby [2], has proved to be able to 
tackle this problem and reduce costs while increasing 
efficiency. The self-organisation concept was further 
nourished by mathematical methods regarding complexity. 
The Self-Organising Network (SON) has been identified as a 
powerful platform for the implementation of these methods in 
wireless communication networks [3].  
 
In this paper, a method based on the Pareto-Koopmans 
efficiency [4] for performance optimisation in SON is 
introduced. To clarify which application in SON is aimed at, 
we need to introduce the terms used in this article. The term 
of optimisation has widely been used for various applications. 
However, optimisation in SON can specifically be based on 
three different approaches [5]:  capacity-driven, coverage-
driven, and performance-driven. A performance-driven 
optimisation process is to improve User Equipment (UE) 
perceived performance, such as throughput, fairness, desired 
Key Performance Indicator (KPI) or Quality of Service (QoS) 
parameters. In this paper we particularly focus on 
performance-driven optimisation in SON. On the other hand, 
the Pareto-Koopmans efficiency of systems is said to be 

accomplished when it would be impossible for a node to be 
better off without another node to be worse off. This 
definition of efficiency leads us to a set of optimal points, 
which is known as Pareto Frontier (PF) [6]. PF is well known 
in realms of economy, social sciences and numerous branches 
of engineering for Multi-Objective Optimisation (MOO) 
problems. The main goal of a MOO is to find the optimum 
solutions, which corresponds to the optimal values of multiple 
objectives. PF is a notion for applications of MOO when the 
input parameters are also deeply coupled, which is referred to 
as coupling or conflict problem. Surveying literature, in [7] 
authors introduced SON and its use-cases in wireless 
networks.  The problem of coupling was also identified in 
some use-cases. Amongst them, Coverage & Capacity 
Optimisation (CCO) use-case has been discussed in several 
studies [8, 9]. It well established that in a cellular network, the 
coverage, capacity and quality of service are deeply coupled 
to each other. Though there are plenty of works in literature 
that attempt at jointly optimising these coupled objectives, it 
is worth pointing out that many alternative optimisation tools 
suitable for this problem have not yet been fully explored. 
More specifically most of the previous works focus on 
network level while assuming same settings for all cells. This 
paper addresses the problem of coupling within self-
optimisation function of SON, which is rolled out in a modern 
cellular networks infrastructure, such as Long-Term 
Evolution (LTE) and LTE-Advanced.  
 
Though the coupling problem within SON has been addressed 
in literature, however, the state of the art is far from mature. 
The coupling problem happens in SON when one objective 
function is desired, but, optimising the desired objective 
worsens other performance indicators, e.g. targeting higher 
capacity can take toll on coverage or energy efficiency. To 
solve such a problem that have mutually coupled multiple 
objectives, MOO is usually applied. However, classic MOO 
suffers from a draw back that it may reach one of many 
optimal points in the state-space of an underlying system. 
This shortcoming is compromised by considering a PF 
consisting of a set of optimal solutions to a Decision-Making 
(D-M) module in SON that in turn can choose a best desired 
solution [10]. While the classic MOO addresses the 
complexity arising from the coupling among the multiple 
objectives in SON, it may not address the presences multiple 
resources or parameters [11]. In contrast, in this paper we 
consider Multi-Resources Multi-Objectives (MRMO) 
optimisation. In this approach all objective functions are 
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optimised in parallel there by providing a set of alternative 
optima, which offers flexibility to the D-M. To this end, we 
generally require a population-based algorithm, e.g. meta-
heuristic, to produce the optimal set. Rest of the paper is 
organised as follows: we present a literature review in Section 
2 including related works regarding MOO. In Section 3, the 
system model is explained which introduces the algorithm of 
Enhanced Adaptive Simulated Annealing  (EASA), applying 
it to performance optimisation in a SON/CCO use-case. 
Finally, in Section 4 we present the simulation results and 
later in the conclusion we discuss the outcome. 

2 Survey and Related Works 
As a part of SON, self-optimisation has been viewed as a 
broad and open area, not yet well studied. One of the main 
reasons has been as the complexity of optimisation functions 
and the large number of parameters for optimisation [7]. The 
main motivation is to find how to solve coupling problem 
within self-optimisation module of SON and how to access 
the set of optimal points while an optimisation process of 
MOO is running. Studies based on MOO have focused on 
access to such set. In Pareto-Koopmans efficiency, this final 
set will appear as a PF. On the other hand, as the PF for the 
underlying problem introduces the upper bound for an 
optimal set, i.e. a boundary for the optimisation process, any 
improvement in this frontier, which is a Pareto improvement, 
is desired. It is interesting to know self-organisation as the 
evolution of system states along a PF. The coupling problem 
in wireless networks has been observed in even earlier work 
[12], which introduces a trade-off between coverage and 
capacity without Pareto notion. The approach in [12] is based 
on a customised relation between coverage and capacity, 
which is not in line with the Pareto-Koopmans efficiency and 
self-optimisation of SON. Recent studies have introduced 
parametric methods to handle the coupling problem such as 
controlling α-fairness against bit rate in [13] which introduces 
an impact of α-fairness that can trade between efficiency and 
fairness. Another methods for Pareto improvement have been 
studied in [14], where the game-theoretic Pareto improvement 
with Max-Min optimisation is introduced, which characterises 
the PF based on rate in a cell-optimisation process.  
 
2.1 Fundamental Theorems 
An interesting mathematical theorem has been studied in [15] 
that proves that performances of all Single-Objective 
Optimisation (SOO) algorithms, including deterministic, 
stochastic and heuristic algorithms, across the set of all 
underlying problems are the same, unless the algorithm is 
tailored to exploit the specific structure of a problem. 
However, this does not imply that any algorithm is capable of 
finding the solution for all optimisation problems. To clarify, 
if  indicates the probability of performance 
for algorithm  simulated u times on sample set  and f as 
the objective function, then: 
 

 

       (1)                                               

where  is the second algorithm simulated u times on the 
same function f and the sample set being the same. Then, all 
optimisation algorithms will indicate the same performance in 
terms of overall average, with a given set of observations, i.e. 
performance is independent of SOO algorithms. This 
theorem, namely No Free Lunch (NFL), states that the 
universally best SOO algorithm does not exist. Nonetheless, it 
has recently become known that MOO using some algorithms 
does not comply with the NFL [16], including algorithms 
those do not depend on a priori information, i.e. heuristic or 
meta-heuristic with less dependency. So these theorems pave 
the way to new methods, which are able to enhance the final 
performance with achieving a better set of optimal solutions. 
This also, leads us to the concept of Pareto improvement, 
which concerns the improvement of the PF for the underlying 
problem. In the next section, this improvement in derived PF 
will be shown.  
 
2.2 Multi-Objective Optimisation 
In the following, we introduce MOO algorithms, also called 
as Vector, Multi-Criteria or Multi-Performance Optimisation 
[4], which have been considered in this study. Some studies 
have exploited certain methods to convert the MOO problem 
into a SOO problem by weighted-sum, ε -constraint or 
similar aggregation or scalarising methods. Though this 
conversion can be used for convex optimisation problems, 
most optimisation problems in SON are non-convex. So these 
methods may not be suitable unless necessary convexity 
conditions are provided. However, meta-heuristic algorithms 
are considered for broader MOO problems in the field as they 
do not need to convexity conditions. The use of weighted-sum 
has been confronted by many contradictions in literature 
because the general solution for setting the weights is still an 
open topic, which may not satisfy the D-M, particularly, for 
complex system as the desired application in this study. The 
weighted sum has been utilised for self-optimisation of pilot 
power in SON [17] and the study of joint optimisation of 
Energy Efficiency (EE) and Spectral Efficiency (SE) in [18]. 
Though, a comprehensive comparison between the weighted 
sum and heuristic methods has not yet been conducted [19], 
however, converting the MOO problems into a SOO should 
produce sub-optimal solutions. The weighted sum can be 
found amongst the first studies in this field from the 1980’s. 
However, with such techniques the advantage of MOO can be 
lost as the implicit trade-off within MOO provides much 
more flexibility to the D-M and the provided PF reveals trade-
off boundaries to the D-M.  
 
2.2.1 Methods and Algorithms for MOO 
There are several heuristic optimisation algorithms, originally 
introduced for SOO problems; amongst them SA has been 
known because of its potential to be easily extended to MOO 
problems. Also, mixing different heuristic algorithms in 
MOO problems has been studied in [20]. Authors apply 
Genetic Algorithm (GA) strategy for a sample population of 
interacting solutions while a scalarising function is used in 
their approach. As in this study, we focus on Pareto optimal 
set, the multi-objective version is utilised, i.e. Multi-Objective 
Simulated Annealing (MOSA), introduced in [21], that is an 
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extension of SA. We will compare the proposed algorithms 
with the results of MOSA for the considered case in this 
study. Authors in [22] have presented a method based on 
archiving in MOSA. This method is basically stores all non-
dominated solutions and then determines the acceptance 
probability for each objective function based on the stored 
data. This method does not use a scalarised objective 
function. In fact, the methodology is based on a concept of 
Tabu search into SA, which creates the archiving process as a 
memory for the optimisation process. A self-similar extension 
to SA was offered in [23] for MOSA. In this approach, 
improvement or deterioration with respect to the objective 
functions are accepted based on probabilities for each move. 
So deterioration to all objective functions is also possible with 
a random probability (this is similar to the deterioration 
probability in SA for SOO problems). An interesting 
adaptation of the Pareto optimal set into MOSA was proposed 
in [22] which adapts the acceptance criterion in MOSA 
algorithm based on Pareto-domination  
 
2.2.2 Pareto Frontier 
With this study, a PF is provided. To find the PF, we have to 
notice that every optimal point, which was found by one run 
of the optimisation algorithm, should not be a part of the PF 
unless there is no more optimal point, which satisfies the 
Pareto-Koopmans efficiency condition. So in this sense the 
MOSA algorithms were run for several times to find the 
optimal points which can shape parts of the PF. However, this 
should not provide the exact PF as it needs to search all state-
space, which is impossible in limited-time and with given 
convergence conditions. So various points, which may shape 
the region of the PF, can be found via this approach. This 
region is called Pareto optimal set.  

3 System Model 
Numerous approaches have been developed in the literature 
with the aim of determining the Pareto optimal. However, 
SA-based algorithms have been identified amongst the best 
meta-heuristic algorithms for MOO problems with many 
advantages over conventional methods [16], comparable with 
Multiobjective Optimisation with Genetic Algorithm 
(MOGA) [24]. We have chosen MOSA for the optimisation 
task in this study to compare with the multi-objective 
algorithm of EASA [25].  
 
The pseudo-code for the EASA is shown in the figure 1. We 
used the scenario of CCO use-case as recommended by 
3GPP, which aims at enhancing the coverage and capacity in 
SON. In the CCO use-case, the ultimate technical 
functionalities concern the increase of both capacity and 
coverage in a cellular network, which is subject to the 
coupling problem. As we have already explained in Section 1, 
to measure the performance we have to exploit indicators for 
a comparison study. To this end, we exploited throughput and 
also Jain’s Fairness Index (JFI), in order to be able to 
compare the result with the other studies. Figure 2 shows the 
scenario in SON with CCO use-case, which we have 
considered in this study. 

begin procedure  
define objective functions fn( ), =( )T ;n=1,2,… 
define the Pareto optimal set  
begin initialisation 

initialise initial Temperature T0,  
initialise initial guess (0)  
set final Temperature Tf 
determine max(Iteration) 

end initialisation 
determine S:= Similarity Measure 
define cooling schedule T  (S).T ; 0< <1  

while (T>Tf) and (m<M) and (n<N) 
new random locations: m+1  
calculate n= fn( m+1)-fn( m)
accept the new solution if all fn is better 

if not improved 
         calculate n=exp(- n /(KT(S,t))) 
generate rand 

if all n >rand  
accept the new solution 

endif  
endif 

update the best *, f* 
end while 

end procedure 
Figure 1. Pseudo-Code for EASA 
 
 
In this scenario, we aim at maximising performance for 
desired users in a cell. SON parameters are considered for the 
performance evaluation. 
  
3.1 Performance Evaluation 
The following procedure was designed to evaluate the 
adaptive optimisation process. We aim for: 
 

          (2) 
 
where K is the number of cells, p is the performance measure 
and  is the nth objective function, N is the number of 
objective functions, so the optimal SON parameters can be 
formulated as:  
 

{                 (3)    
 

which is any combination of  network parameters 
within K cells. In this study, the performance measure is 
defined based on similarity between measured KPIs and 
desired (target) KPIs. KPIs from all involved cells are 
considered, as: 
 

                    (4) 
 
As the network operator may consider different patterns of 
KPIs for different cells, a measure, using all parameters is 
considered. If the target and measured KPIs are denoted by 
KPI(t), KPI(m) respectively,        

α α

δ

β δ

β
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Figure 2: SON with CCO use-case and Antenna Beam Pattern 
 

 

                           (5)  
is the general form of performance measure in this approach 
and  is weight for the ith KPI in the jth cell (||.|| denotes a 
measure). In this case, each cell may have its own 
performance: in the first step the overall performance measure 
of  is considered for cell j. We evaluate each step of the 
optimisation by measuring the similarity between the 
measured and targeted KPIs.  
 
A scenario was set up in SON, to develop an analytical model 
for downlink (DL). The shadowing of log-normal distribution 
is utilised with correlations amongst users who are served by 
the same eNodeB and with their distances being less than a 
pre-defined value (100m in the simulation). Path loss, 
penetration loss, and thermal noise are added to the final 
model. Fairness index and throughput are formulated as the 
objective functions, which are used in the optimisation 
process (detail in the next section). The Physical Resource 
Block (PRB) bandwidth (W=180 KHz) of each user in the jth 
cell was applied, and  is the bandwidth efficiency 
parameter. Input parameters including both antenna 
parameters (tilt and azimuth), also multi-objective algorithm 
of EASA are considered, and a complete set of measurements 
and indicators are considered for all cells as well as traffic 
loads information. A pair of input parameters is considered 
for each cell as: 

 
={( ), ( )… ( )}            (6) 

 
where  is tilt angle and  is azimuth orientation angle, with 
slight variations in inputs, we will have: 

 
={( ), ( )… ( )}          (7) 

 
To accept the changes, an evaluation based on optimisation is 
carried out. Suppose  is the acceptance probability for the nth 
objective function in EASA and then we will have: 
 

 ; = ( )- ( ) ;   (8) 
 

S is the similarity measure, K is the Boltzmann constant and 
T(S,t) is the annealing function in EASA with t as time. This 
algorithm for self-optimisation function in SON is used to 
adaptively update pair parameters of all cells, i.e. , .  

 
3.2 SON-LTE Scenario 
With the formulation of the problem in the previous section, a 
scenario based in SON-LTE was considered. In this section, a 
description of the considered scenario is explained. We 
assume the transmit power is 30dBm and the noise power is -
114dBm per PRB.  An antenna pattern having a relative gain 
of 10dBi is modelled as:  
 

Θ   , 

Φ

(9) 

 
where ,  are the antenna beam patterns, , Φ are 
the central reference angles for the tilt and azimuth, 
respectively (ref. Table 1). Therefore, the 3D model of the 
antenna pattern can be numerically obtained as a joint model 
of , . Also, it is assumed that all cells have the same 
resource of bandwidth and a fixed number of PRBs. The 
diameter of each cell in the initial conditions is equal to 1Km. 
In addition, there is no scheduling for PRBs. Values for 
parameters of the shadowing and path loss are based on 3GPP 
recommendation as for the shadowing effect user correlations 
were considered (Table A.2.1.1-3 in [26]).  
 
The path loss model is based on Okumura-Hata, which is 
initialised for LTE in this simulation (penetration loss is 
20dB). The height difference between antenna and UE is 
supposed to be 50m (3GPP recommendation: 20-70m). To 
conduct an accurate shadowing model, two-dimensional 
shadowing is exploited in the simulation. Also, standard 
deviation is 8dB, µ=0 for a log-normal distribution with 
spatial dependency. Detail of initial setting for the network 
parameters is shown in table 1. For coverage, the corner of 
each cell must receive at least a power greater than or equal to 
the threshold from one of three neighbours as when a cell 
outage happens in other scenario in SON and the self-healing 
function of SON is enabled to recover the problem. Finally, 
the two objective functions are considered using throughput 
and JFI, which are:  
 

  
                                     (10)     

 
where ρ is the efficiency parameter for the Bandwidth (W), 
and SINR is calculated based on the received signal, noise 
powers and interferences in DL. ,  are throughput and 
fairness functions, respectively.  is the throughput for the 
ith UE and  is the JFI of UE throughputs for the jth cell, as 
well. Also for consistency, we use 10%-top UE throughputs 
as the benchmark. 
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Table 1: Set-Up Parameters in SON-LTE Scenario 
Thermal Noise  -114dB/PRB 
Height Difference (UE,eNodeB) 50m  
Noise Figure 9 dB  
PRB (W) 180KHz 
Antenna Gain 10dBi 
eNodeB Tx Power 30dBm 
Cell Radius 1 Km 
Bandwidth Efficiency Coeff. ( ) 0.9
Max Number of UE in Cell 50 
Vertical  half power Beam-width ( ) 10  
Horizontal half power Beam-width ( ) 60  
Penetration Loss [26] 20dB 

4 Simulation Results Analysis 

To implement the objective functions, we consider the inverse 
of throughput and JFI for cell one as the energy of states in 
both methods of MOSA and EASA to compare the results. 
Figure 3 shows 10%-top UE throughput in cell No. 1 for both 
methods as both methods are converged into the final optimal 
point. In order to implement in a self-optimisation function of 
SON, the final parameters based on D-M will be derived to 
adjust the network parameters, e.g. antenna tilt and azimuth. 
Regarding the 10%-top benchmark, it is based on reports that 
1% of users use about 50% of bandwidth and 10% of users 
use about 90% of bandwidth. This means that with a 10%-top 
UE throughput we are managing about 90% of cell traffic. To 
this end, we choose the 10%-top UE throughputs for 
comparison purposes. 
 
Figure 4 shows the JFI for the same process of optimisation. 
However, we can see in these two figures that the point-to-
point optimum results outperform in EASA. The convergence 
region specifies the optimum solution provided by 
optimisation process. With the process of Section 2.2.2, we 
construct the PF for both optimisation processes, which leads 
to an optimal set (ref. Section 3 for system model) for each 
method as plotted in figure 5. Exploiting SA, MOSA as well 
as EASA are able to recognise the non-dominated Pareto
optimal set. Usually meta-heuristic optimisation methods do 
not need priori information; however, in some variations of 
MOSA such as modified ranking with goal information [4] a 
priori information is needed. Also, in the case of EASA, we 
need target KPI that is a part of the proposed method in 
section-3. In figure 5, each point is related to one optimisation 
process, which satisfies the Pareto-Koopmans efficiency 
condition.  
 
In figure 5, we note that the Pareto optimal set is a set of 
points, which do not resemble a boundary. Yet, as we have 
explained in Section 2, this would be the final MOO results in 
a time-constraint approach as even with meta-heuristic 
algorithms a whole search in state-space is not feasible. 
Nonetheless, with the same approach, we compare the Pareto 
optimal set for each method. To this end, the estimated 
boundaries ( ) for two methods are shown in figure 6. It can 
be seen that   outperforms . In this figure, the 
enhancement of estimated PFs can be seen which is a Pareto 
improvement as previously explained in Section 2.  

  
Figure 3: UE Throughput in SON-LTE Scenario of CCO 
 

 
Figure 4: Multi-Objective Optimisation of Fairness Index  
 

 
Figure 5: Pareto Optimal Sets for Throughput vs. JFI 

5 Conclusion 

In this paper, we introduced a method based on SA for MOO 
in SON-LTE and compared the results with the ones obtained 
from conventional method of MOSA for a scenario in CCO 
use-case. In this scenario, the problem of coupling was 
addressed which is recognised between UE throughput and 
Jain’s fairness index in this study. The optimisation process 
was carried out with a parameter setting of LTE based on 
3GPP recommendations. As the input parameters of SON, we 
chose the antenna parameters of tilt and azimuth to 
investigate the performance optimisation methods. 
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Figure 6: Pareto Frontiers (  for MOSA and EASA  

To this end, a Pareto Frontier was estimated based on an 
optimal set in Pareto-Koopmans efficiency regime, which has 
been achieved and compared with the conventional method of 
MOSA. We can conclude that EASA outperforms MOSA as a 
Pareto improvement was detected between their frontiers. For 
future research, the influence of other parameters of SON 
such as coding rate and resource block on the Pareto Frontier 
will be investigated.  
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