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Abstract—In this paper, we propose a data cell outage detection
scheme for heterogeneous networks (HetNets) with separated
control and data plane. We consider a HetNet where the Control
Network Layer (CNL) provides ubiquitous network access while
Data Network Layer (DNL) provides high data rate transmission
to low mobility User Terminals (UTs). Furthermore, network
functionalities such as paging and system information broadcast
are provided by the CNL to all active UTs, hence, the CNL is
aware of all active UTs association. Based on this observation, we
categorize our data cell outage detection scheme into the trigger
phase and detection phase. In the former, the CNL monitors
all UT-data base station association and triggers detection when
irregularities occurs in the association, while the later utilizes
a grey prediction model on the UTs’ reference signal received
power (RSRP) statistics to determine the existence of an outage.
The simulation results indicate that the proposed scheme can
detect the data cell outage problem in a reliable manner.

I. INTRODUCTION

Recently, extensive research work has focused on the con-
cept of self-organizing networks (SON), which involves the au-
tonomic operation of the network by using self-configuration,
self-optimization and self-healing functionalities [1], [2]. In
this paper, we focus on cell outage detection which is
a sub-division of cell outage management in SON’s self-
healing functionality [3], [4]. Cell outage detection aim to au-
tonomously detect outage cells, i.e., cells that are not operating
properly due to possible failure, which may include external
failure such as power supply or network connectivity, or even
misconfiguration [5]-[8]. In some cases, cell outage can easily
be detected by the operations and support system (OSS), while
some detection might require unplanned site visits, which is a
costly task. In addition, it may take hours or days for the cell
outage to be detected, thus resulting in pronounced reduction
in capacity and quality of service, and coverage gap [6], [7].
Hence, automatic detection of cell outage is a necessity, and,
it has been included in recent specification for LTE [5].

Cell outage detection algorithms proposed in [6]-[9] have
focused on macrocells. It is expected that future cellular
networks will be heterogeneous networks (HetNets), i.c., a
mix of macrocells for ubiquitous user experience and small
cells for high data rate transmission. Hence, the algorithms
proposed in [7]-[9] are not suitable for such networks due to
the dense deployment nature of the small cells in the HetNets
as compared to the macro only deployments. Furthermore,
there is high tendency of having a sparse user statistics in
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small cells, since they usually support very few user terminals
(UTs) as compared to macrocells. Recently, [6] proposed a
cooperative femtocell outage detection scheme which is based
on a distributed outage trigger mechanism and sequential
hypothesis testing.

A new paradigm of HetNets architecture that allows for
a more energy efficient operation with reduced overhead via
decoupling the data and control/signalling plane at the air
interphase has recently been proposed in [10]-[12]. In such
layered architecture, the control network layer (CNL), which
is made up of macrocells provide ubiquitous network access.
On the other hand, the data network layer (DNL), which is
composed of small cells, support high data rate transmission.
Hence, UTs requiring high data rate transmission are con-
nected to both the CNL and DNL while low rate UTs are
connected to just the CNL. According to the state classification
in [11] and [12], the CNL is always aware of every UT-
small cell association in its coverage. In such architecture,
the CNL can passively monitor the reference signal received
power (RSRP) statistics of every UT-small cell association in
its coverage while also maintaining a regular update of the
RSRP statistics between the macrocell and each UT. This gives
a new perspective to the cell outage detection contrary to [6],
where such functionality layer separation is not considered.

In this paper, we present data cell outage detection scheme
for HetNets with separated control and data plane. In other to
reduce the detection overhead caused by unnecessary detec-
tion, we categorise the data cell outage detection into outage
trigger and detection phases. The outage trigger phase monitor
the UT-small cell association, handover performance and radio
link failure indication, and triggers outage detection when
it discovers irregularities in UT-small cell association. The
outage detection phase leverages on the grey prediction model
[13]-[17] to tackle the detection problem. The rest of the
paper is organized as follows. In Section II, we present the
system architecture which includes description of the layered
HetNets structure, system model and observations leading to
the detection scheme. In Section III, we present the data
cell outage detection scheme, detailing the outage trigger
and detection phase. In the later, we utilize grey prediction
approach to formulate the detection problem. In Section 1V,
we present simulation results and discussions. Finally, Section
V concludes the paper.
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II. SYSTEM ARCHITECTURE
A. Layered Structure

We consider the separation of the HetNets architecture into
the layered structure as presented in [11], where the CNL
provides ubiquitous network access to UTs while the DNL
support high data rate transmission to UTs. As in [11] and
[12], the CNL is composed of macro BSs which we refer to as
control BSs while the DNL is made up of discontinuous small
BSs which we call data BSs'. As a result of this separation,
network functionality such as paging, multicast, synchroniza-
tion and system information broadcast which are required by
UTs in the detached or idle states are provided by the CNL.
Furthermore, the CNL is also responsible for data transmission
for low data rate and high mobility UTs as well as higher
layer control information transmission such as cell handover,
radio resource control (RRC) connection management and
other functions. As mentioned earlier, the main function of
the DNL is to support high data rate transmission for the
active UTs hence, the functionality of this layer are unicast
and synchronization. Based on this layered structure, an active
UT can be served by either both the CNL and DNL at the
same time for high data rate and low mobility transmission
which is referred to as d-active state, or just the CNL for low
rate or high mobility transmission denoted by c-active state.
Consequently, the transmission from the frame on the DNL can
be switched off when there is no high data rate transmission
from the active UTs.

B. System Model

We consider M data BSs and one control BS providing
DNL and CNL functionalities, respectively, as illustrated in
Fig. 1. Focusing on detecting outage in the data BSs, we
consider an ideal CNL scenario where the control BS cannot
experience outage. Hence, outage can only be experienced
by the data BSs. We consider that m active high data rate
UTs are been served by both the data and control BS while
c active low rate UTs are been served by only the control
BS. The m high data rate UTs transmit and receive data
from their associated data BS and periodically reports their
UT-data BS RSRP statistic to the control BS. Furthermore,
they also sends periodic context information update to the
CNL, which includes, their location information, capability
information, and other information essential for the network
to identify them [11]. Hence, the UTs also periodically report
its measured RSRP from the control BS back to the CNL. The
reported RSRP between u'* UT and node F' is modeled as

(M

where Ptpp is the node F’s transmit power, PL,, rp denotes
the pathloss between the u*® UT and F [18], and Xy rpisa
zero-mean Gaussian distributed random variable (in dB) with
standard deviation o (also in dB).

Trup = PtFB(dBm) — PLu’FB(dB) + Xu,FBy

In this paper, data cell also refer to small cell or data BS while control
cell also refer to macrocell or control BS.
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Fig. 1. Cases in data cell outage detection

We assume that the CNL knows the location of all the small
cells and that the location of the UTs is unknown to either
the CNL or DNL. In case of an handover without a change in
control BS, a UT in the d-active state first transit to the c-active
state then transit back to the d-active state after handover for
continuous data transmission, as recommended in [11].

C. Observation

In order to design a data cell outage detection architecture,
we first illustrate the UT association in the normal and outage
cases in Fig. 1. In the normal case all data BSs operate
normally and the high rate UTs (U2 — U5) are associated with
both the control BS and data BS while the low rate UT (U1)
is associated with just the control BS, as illustrated in Fig. la.
In case of an outage on DBS2, U3 and U4 remain connected
with the control BS for control signalling as illustrated in Fig.
1b; however, they both experience a loss in data link at the
point of outage. After performing data cell search, U3 becomes
associated with DBS1 for data transmission, since DBS1 can
meet its data rate demand. On the other hand, in the case of
U4, it becomes associated with the CBS for data transmission
since it is not in the coverage of any non-outage DBS. The
control BS can keep track of every UT-data BS association
in its coverage and trigger an outage detection process if it
discovers some irregularities in the association. In this case,
the CBS triggers outage detection process since a change
in UT association has occurred without any prior handover
notification. Note that the control BS is always aware of any
change in the state of the UT, i.e., changes from active to idle
state, idle to detached state and vice versa.
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IITI. DATA CELL OUTAGE DETECTION

The data cell outage detection process is categorised into
the trigger and detection phases, as illustrated in Fig. 2. The
control BS receives a periodic update of the RSRP of each UT
to its associated data BS and stores this value in a database.
In the trigger stage, the control BS monitors the UT-data
BS association and triggers the detection stage if there are
irregularities in UT association.

Given that the outage of data BS, d, is to be detected.
In the detection stage, the control BS predicts the RSRP of
all L UTs associated with the data BS d by using RSRP
data from the database. For each of the UTs, the control BS
compares the predicted RSRP value, v,,, with the RSRP value
reported from its present association, r,, to determine the
likelihood of an outage. Based on the predicted RSRP values,
the control BS then compares the ratio of the number of UTs
that are supposed to be associated with the data base d to L
with a predefined threshold, . If the ratio is higher than the
threshold, the control BS makes a decision that data BS, d,
experiences outage. Otherwise the control BS decides that the
data BS d is normal.

A. Outage Trigger Phase

The outage trigger stage involves the control BS monitoring
the UT-data BS association and triggering outage detection
when irregularities in the association occurs. The control BS
is aware of any change in UT-data BS association as a result
of handover or radio link failure. As mentioned earlier, the
control BS is also aware of any state change in the UT such
as a change from active to idle state, idle to detached state and
vice versa. Furthermore, the conditions for data BS to enter the
idle or sleep mode is known to CNL. For example, the data
BS could be allowed to enter sleep mode if the number of
active UTs is lower than a certain predefined threshold during
the last scheduling time interval. Irregularities in UT-data BS
association occurs when all UTs attached to a particular data
BS becomes associated with another data BS or the control
BS (for data transmission) without prior handover initiation
process or the occurrence of a change in state of all the UTs
or radio link failure notification from all the UTs or the data
BS going into sleeping mode.

B. Outage Detection Phase

Once the outage detection phase is triggered, the control
BS can detect outage of the data BS by predicting the
RSRP of all the UT that were associated with it prior to the
outage. We utilize the grey prediction model (GM), which has
been extensively used in handover, positioning and general
forecasting algorithms [13]-[17], for our prediction model.

1) Grey Prediction Approach: In grey system theory,
GM (7, m) denotes a grey model, where 7 is the order of
the differential equation and m is the number of variable.
Here we focus on GM (1, 1) which is a time series forecasting
model and also widely used. According to [13], the GM (1,1)
model can only be used on positive data sequence. Note that
the RSRP values are always positive, hence, the grey model
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Fig. 2.

can be used to predict the next RSRP value from data points
obtained in the database.

The three basic operations in grey prediction are the accu-
mulated generating operation (AGO); the inverse accumulated
generating operation (IAGO) and grey modelling. By using
AGQO, an irregular raw data can be transformed into a regular
data which can be used to construct a model in grey differential
equation. The non-negative RSRP data sequence of user u
prior to the outage is denoted as

PO = (1), r02),10) 1 Om) V4 @)

When the sequence given (2) is subjected to AGO, the
following sequence, iV is obtained as

P = (1), 102), r3) ), V=4 @)

u u u

where

rd (k) =Y rd(),

i=1

k=1,2,3,....n, @)

which results in the grey differential equation given as

5
drzl t(t) +arl() = b, 5)

The coefficients, a and b, can be obtained by using least square
method, as shown in (6):

la,0)” = (B"B)~' B"Y, (6)
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where
T
v o= [r02),r0@), . rOm)
—M@2) 1
—zM3) 1
B = ; (M
—zMm) 1
and 2 (k) = ar&l)(k)—}—(l — ) r&l)(kz -1), k=2,3,...,n,

a is the weighting factor.

Once a and b in (5) are obtained, the grey differential
equation can be used to predict the value of r,, at time instant
k + 1.The solution of r{" (t) at time k+1, i.ec. the AGO grey
prediction model is expressed as

P (k+1) = [n(?)(l) —~ b

b
} e 42 k=0,1,... (8)
Consequently, the prediction value of the benchmark RSRP

data at time (k + 1) can be calculated by an IAGO as

b} ek (1— )

a

a a

)

2) Grey Prediction Modification Using Fourier Series of
Residual Error: According to [16] grey model prediction
accuracy can be improved by the Fourier series of error
residuals. Consider the u'" user RSRP sequence, r&o) in (2)
and its predicted values obtained from (9), then the error of
the sequence r,(to) can be expressed as

PO+ 1) = [rif’)(l) -

€0 = (692,696),...60m), 10
where
E0 (k) = rO (k) = #O (k),Vk =2,3,...,n.  (11)

The error residuals given in (11) can be re-expressed in Fourier
series in the following approximation

v . .
1 271 2mi
(O) ~ — . - . Q]
£, (k) 2ao+;:1 {az cos( T k> +b; s1n< T kﬂ , (12)

Vk=2,3,...,n, where T =n—1and V = |23 | — 1. Note
that the expression in (12) further be re-expressed as

0
¢ ~Qc, (13)
where
0.5 cm(z%ﬂ) sin(225 co§(227,}2) sin(2252 cos(228Y) sin(222Y
Q __|os cosé%f) sin| 327" 005(32,}‘:2) sin| 32%2 cos 32"TV sin(322 Y

and =

Hence, C can be obtained by using the least square method to
solve (13) as

€= (QTQ) QTeD. (15)

The Fourier series correction is thus given according to [16]
as

FOR) = O (k) — €O R)VE=2,3,...,n4+1 (16)

ISBN 978-3-8007-3621-8

168

an ba]" (14)

TABLE I
SIMULATION PARAMETERS.

Parameter Value (units)
Data BS Transmit Power 10 dBm
Control BS Transmit Power 46 dBm

Channel Model
Pathloss Model

Urban Outdoor
[18]

Minimal sensible signal strength —105.5 dBm
Shadowing standard Deviation 2—12dB
Shadowing Correlation 0.5 between cells
Shadowing Correlation Distance 25 m
Waypoint model speed interval [0,10] m/s
Waypoint model pause time interval [0,1] s
Waypoint model walk interval [2,6] s
Detection threshold 1 0.5

Detection window size N 10
Grey weighting factor « 0.5

3) Outage Decision: Firstly, the RSRP of all the UTs that
were previously attached to the data BS whose outage is been
detected, i.e., data BS, d, are predicted according to (9) or (16).
Then for each UT the control BS compares its predicted RSRP
value, v, = 7 k+1) ~ 9 (k+1), with the RSRP after the
trigger, r, = r (k4 1). If after the outage trigger, the UT,
u, is been served by the control BS for data transmission and
vy = PO (k+1) = #O(k+1) > 7, — A, where A is the data
cell range expansion offset, the counter, 1, is incremented by
1, since the UT should be associated with data BS, d, based
on the prediction. Otherwise, the counter, i is incremented
by 1. On the other hand, if another data BS is serving UT u,
after the outage trigger and v, ~ 7\ (k+1)~ ﬁ&o)(k +1) >
ry, the counter, i1, is incremented by 1, otherwise an inverse
prediction is performed on the RSRP to the serving data BS.
The inverse prediction checks the RSRP to the data BS d and
RSRP to the serving data BS after the trigger, i.e. data BS
d, at the point just before the trigger. The control BS waits
for the prediction window size, N, and performs an inverse
prediction on the RSRP of each of the UTs associated with
data BS d to obtain the predicted RSRP prior to the trigger
decision, iv,,. Thus if the RSRP of the u'" UT to the serving
data BS (d) before trigger, ov,, is such that ov, > iv, the
counter 47 is incremented by 1 otherwise, the counter is is
incremented by 1.

Finally, an outage is declared if the ratio ilfib
w 1s a predefined threshold.

> u, where

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we demonstrate the performance of our data
cell outage detection scheme and the impact of the system
parameter on the detection accuracy with simulation results.

A. Simulation Setup

We consider a heterogeneous cellular architecture with
several small cells overlaid on a macrocell. The small cells
are distributed randomly within an area of 1 km x 1 km. The
control and data BS operates on separate carrier frequency
with each having a 10 MHz channel bandwidth. The UTs
are distributed randomly within the coverage area. We assume
a small cell range expansion offset of 12 dB, which means
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that a UT will be associated with the small cell for data
transmission even if its RSRP value is 12 dB weaker than
the control BS [19]. Otherwise, the UT will be associated
with the control BS for both data transmission and control
signalling. All small cells use a uniform transmission power.
Each UT move according to the random waypoint mobility
model within the coverage area of the network [20]. Also,
the UTs send their data BS RSRP report to the control BS
every 0.1 s. Unless otherwise stated, the number of data BS,
M = 100, while the remaining system parameters are given
in Table I. The simulation results are the average results from
1000 randomly generated network topologies.

B. Overall Performance

Figs. 3, 4 and 5 illustrates the overall performance our data
cell outage detection, i.e., the detection accuracy. The detection
accuracy is the probability of accurately detecting an outage
data cell. In Figs. 3 and 4, we utilized the grey prediction
modification with Fourier series of residual error (GMF)
to plot the detection accuracy against the user density and
the data BS transmission power, respectively, for shadowing
fading standard deviation of, 0 =2, 6 and 10dB. Fig. 3 clearly
shows that increasing the user density increases the detection
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accuracy. This is due to the fact that increasing user density
enables a better spatial correlation. Fig. 4 depicts the detection
accuracy for various data BS power levels and a user density
of 3(/100m x 100m). The result shows that low data BS
transmission power results in degradation of the detection
accuracy, while increasing the transmission power leads to
an improvement in the detection accuracy. This is because
when the data BS transmission power increase, it becomes
easier to distinguish between the predicted RSRP statistics
of the outage case and normal case. In Fig. 5, we compared
the performance of the grey prediction model (GM) and the
Fourier modified version (GMF) which are obtained from
(9) and (16), respectively. We observe that the GMF scheme
outperforms the GM as expected, since the former utilizes the
prediction error in the later to improve its performance. It can
also be observed in Figs. 3, 4 and 5 that the detection accuracy
is lower with larger shadowing fading standard deviation o.
This is because a high ¢ means a severe shadowing fading,
which leads to a more random RSRP statistic.

Fig. 6, investigates the impact of the predefined threshold
u on the detection accuracy, by using the GMF approach, for
various user densities in (/100m x 100m) and o = 6 dB. It
can be seen that the highest detection accuracy is obtained by
setting ;¢ = 0.5. This setting implies that the RSRP prediction
of more than half of the UTs that were associated with the
data BS whose outage is been detected, i.e. d, must indicate
the existence of an outage, before d can be declared to be in
outage. The stepwise shaped plot is obtained since the number
of UTs must be an integer value. It can also be seen that
no much degradation in detection accuracy is obtained until
i > 0.67, which implies more than two-third of UTs that were
associated with d must indicate the existence of an outage.

Fig. 7, investigates the impact of the prediction window size
N on the detection accuracy, by using the GM approach, for
o = 2,6 and 12dB and a user density of 3(/100m x 100m).
It can be observed that increasing the prediction window size
above the require minimal (N = 4) leads to an increase in de-
tection accuracy up to a given point where any further increase
in N has no impact on the detection accuracy. Fig. 7 further
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shows that increasing N has more impact on the detection
accuracy for larger shadow fading standard deviation, o. This
is because of the lower randomness in RSRP statistics when
o is low; hence a low value of N is required to obtain the
highest attainable detection accuracy which is the contrary for
higher o where a higher value of N is required.

V. CONCLUSION

This paper proposes a data cell outage detection scheme
for the HetNets with separated control and data plane func-
tionalities. Our outage detection process is subdivided into the
outage trigger phase and outage detection phase. The outage
trigger phase leverages on the ability of the control BS to
monitors the UT-data BS association and therefore triggers
outage detection when irregularities in the association occurs.
In the detection phase, we utilize the grey prediction model to
determine the occurrence of an outage. Our evaluations show
that our data cell outage detection scheme achieves a high
detection accuracy.
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