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Abstract—In research community, a new radio access network
architecture with a logical separation between control plane
(CP) and data plane (DP) has been proposed for future cellular
systems. It aims to overcome limitations of the conventional
architecture by providing high data rate services under the
umbrella of a coverage layer in a dual connection mode. This
configuration could provide significant savings in signalling over-
head. In particular, mobility robustness with minimal handover
(HO) signalling is considered as one of the most promising
benefits of this architecture. However, the DP mobility remains
an issue that needs to be investigated. We consider predictive DP
HO management as a solution that could minimise the out-of-
band signalling related to the HO procedure. Thus we propose
a mobility prediction scheme based on Markov Chains. The
developed model predicts the user’s trajectory in terms of a
HO sequence in order to minimise the interruption time and
the associated signalling when the HO is triggered. Depending
on the prediction accuracy, numerical results show that the
predictive HO management strategy could significantly reduce
the signalling cost as compared with the conventional non-
predictive mechanism.

Index Terms—Base station; cellular systems; control data
separation architecture; handover; LTE; Markov Chain; mobility
history; mobility prediction.

I. INTRODUCTION

Wireless data traffic is increasing dramatically due to
proliferation of smart devices and the high dependency on
mobile communications in everyday life. Among the possible
techniques to overcome the capacity crunch problem, network
densification is seen as the most promising solution [1], [2].
It has been estimated that 50 million base stations (BSs)
will be deployed by 2020 [3]. Although these estimations are
debatable, they give an indication of the situation in the near
future. Such massive deployments raise several problems in
terms of energy consumption, mobility management, capital
and running costs, planning and scalability. Most of these
issues are tightly coupled to the radio access network (RAN)
architecture which constitutes an integral part of cellular
systems.

With ultra-dense small cell deployments, mobility manage-
ment becomes complex because handovers (HOs) will happen
frequently even for low mobility users. In the conventional
cellular architecture, the HO procedure includes transferring
all channels (i.e., control and data) from one BS to another
with a significant signalling load [4]. With a frequent HO rate,

the signalling overhead and the call drop rates could increase
dramatically. Recently, a futuristic RAN architecture with a
logical separation between control plane (CP) and data plane
(DP) has been proposed to resolve these issues [5]–[7]. In
the control/data separation architecture (CDSA), a few macro
cells, known as control base stations (CBSs), provide the basic
connectivity services and support efficient control signalling.
Within the CBS footprint, on-demand high data rate services
are provided by dedicated small cells known as data base
stations (DBSs). As shown conceptually in Fig. 1, all user
equipments (UEs) are anchored to the CBS, while the active
UEs are associated with both the CBS and the DBS in a dual
connection mode [5].

This configuration could offer simple and robust HO pro-
cedures because the radio resource control (RRC) connection
is maintained by the CBS (which is typically a macro cell),
hence the UE is anchored to a BS with a large coverage area.
As a result, the intra-CBS HOs (i.e., between DBSs under
the footprint of the same CBS) do not require changing the
control channel, which in turn minimises the CP HO failure
rate [7], [8]. Nonetheless, a DP HO is always required when
the UE moves from one DBS to another. Given the small
coverage area of the DBS, the DP HO signalling could increase
dramatically. Context information such as mobility history can
play a key role in optimising the RRC and the DP HO process.
It can be used to select the most appropriate DBS for a moving
terminal, e.g., a DBS with the highest probability that the user
will not leave it quickly [6], [9]. In addition, predicting the
DBSs that the UE will visit allows these DBSs to prepare
and reserve resources in advance. This in turn could relax the
DP HO requirements and minimise the associated signalling
and interruption time [9]. However, such techniques require a
reliable mobility prediction scheme.

In this paper, we develop a mobility prediction model for
predictive HO management in CDSA networks. A general
learning and prediction scheme that is not restricted to a
particular scenario is developed, and we evaluate the signalling
cost in both predictive and non-predictive HO management
strategies. The remainder of this paper is structured as follows:
Section II develops the mobility learning and prediction model.
Section III discusses the HO procedure with and without
mobility prediction and formulates the signalling cost in both
cases. Section IV provides numerical results that assess the
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Fig. 1. Control/Data separation architecture

accuracy of the proposed scheme as well as the associated
signalling cost. Finally, Section V concludes the paper.

II. MOBILITY PREDICTION MODEL

The proposed scheme relies on representing the DP network
(i.e., the DBSs) by a discrete-time Markov Chain (DTMC).
The latter is a stochastic process characterised by a state space,
a transition matrix and an initial distribution [10]. Several
variations of the DTMC are used to model and to predict
users’ mobility, see for example [11]–[14]. Given the problem
under study, a HO from a DBS to another is equivalent to
a state transition. Thus each state in the DTMC represents a
DBS. Fig. 2 shows a graphical representation of a DTMC with
ti,j being the probability of a direct transition (i.e., HO) from
DBSi to DBSj .

The memoryless property of the DTMC implies that the
transition matrix would have a static realisation independent
of the user’s history. In contrast, the proposed model considers
a learning transition matrix that can be updated dynamically.
Following the derivations of the standard DTMC, the proba-
bility distribution can be written as [10]:

pk = p0 T
k (1)

with

pk = [p1 p2 p3 ... pn]

p0 = [γ1 γ2 γ3 ... γn]

T =


t1,1 t1,2 · · · t1,n

t2,1 t2,2 · · · t2,n
...

...
...

...
tn,1 tn,2 · · · tn,n

 ,

where pk is the kth HO probability vector, i.e., pi is the
probability of being at DBSi after k HOs. T is the transition
probability matrix while p0 is the initial distribution vector.
Equation (1) can be used to predict a DBS sequence in the
user’s path. The prediction depends on mobility history which
is reflected by T. In the following, we describe the procedure
for updating the transition matrix.

DBS1 DBS2 · · · DBSn

t1,1 t2,2 tn,n

t1,2

t1,n

t2,1

t2,n

tn,2

tn,1

Fig. 2. Discrete-time Markov Chain with n states (i.e., DBSs), only states 1,
2 and n are shown for readability

A. Transition Matrix: Properties and Conditions

Consider S as the DTMC state space with I being the states’
indices. Define Ni as a list of the DBSs that are neighbours1

to DBSi ∀ i∈ I. Notice that Ni is not a UE-specific parameter,
but rather it is a system parameter. The following properties
govern T in the context of the considered transitions (i.e.,
cellular HOs). These properties are used to set necessary
conditions aligned with realistic assumptions.

• Since the number of the DBSs is finite, the DTMC state
space is finite:

S = {DBS1, DBS2, ... , DBSn} , I = {1, 2, ... , n} (2)

• ti,j is a positive real number between 0 and 1 (inclusive):

0 ≤ ti,j ≤ 1 , ∀ i, j ∈ I (3)

• A HO from a DBS to itself is not possible (i.e., a ping-
pong HO is considered as two HOs between the involved
DBSs). Thus T is a hollow matrix:

ti,i = 0 , ∀ i ∈ I (4)

• The direct HOs are possible between neighbouring DBSs
only:

ti,j = tj,i = 0 , ∀ j /∈ Ni (5)

• Any new movement starts from the destination of the
previous trajectory. Thus the UE will definitely make an
outbound2 HO from any DBS. However, the UE may not
necessarily perform an inbound HO to all the DBSs in the
network. As a result, T is a right stochastic matrix but
not necessarily a doubly stochastic matrix. This property
sets the following condition:

n∑
j=1

ti,j = 1 , ∀ i ∈ I. (6)

1 The first tier neighbours that can be reached directly in a single HO.
2 The HO from X to Y is an outbound HO from X’s point of view and it is

an inbound HO from Y’s perspective.
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B. Transition Matrix Initialisation

The mobility prediction entity (MPE) constructs a n × n
transition matrix for each user and initialises it according to
the conditions of Section II-A. The process of initialising T
involves invoking conditions (4) and (5) to ensure a zero
probability for the direct HOs from a DBS to itself or to
a non-neighbouring DBS, respectively. Then the remaining
elements in T are initialised with an equi-probable outbound
HO assumption, since the new users do not have a mobility
history. Algorithm 1 illustrates the initialisation procedure.

Algorithm 1 Initialisation of the transition matrix
1: Invoke conditions (4) and (5).
2: Set ti,j =1 , ∀j ∈Ni.
3: Set ti,j=

ti,j
n∑

j=1
ti,j

, ∀ i, j ∈ I.

C. Online Learning Process

The MPE tracks the user’s movement (in terms of HOs)
and updates T accordingly. Fig. 3 shows a block diagram of
the proposed mobility learning and prediction scheme. The
basic idea is to favour the most common routes followed by
the user by giving them higher probabilities compared with
other routes. A recent trajectory dependency parameter, Rd,
where 0≤Rd≤ 1 is proposed to control the model’s reaction
to random or less frequent movements. Small (large) values
of Rd indicate that the MPE has a low (high) confidence in
the regularity of the user, hence each trajectory will have a
low (high) impact on the updated T. The extreme case of
Rd =0 means that T will not be updated (hence the prediction
is independent of the movement history), while the case of
Rd =1 biases the prediction towards the most recent trajectory.

The process of updating T can be described by the follow-
ing example without loss of generalisation. Suppose a user
following the path: DBSa → DBSb → DBSc. Then for each
HO e.g., from DBSa to DBSb, the MPE updates the prob-
abilities of outbound HOs from DBSa to each neighbouring
DBS in a game scheme of several stages. In the first stage,
DBSb and the subset of the DBSs in Na that have non-zero

probabilities for inbound HOs from DBSa participate in the
game. i.e.,

PS1 =
{

DBSj : j ∈ Na ∧ ta,j > 0
}
∪ {DBSb} , (7)

where PSx is the players set in stage x≥ 1 of the game. In
the first stage, the probability of the direct HO from DBSa

towards DBSb is increased by a certain amount controlled
by Rd. Similarly, the probabilities of the direct HOs from
DBSa towards all other playing DBSs (i.e., except DBSb) are
decreased. This can be expressed mathematically as:

t
(1)
a,b = ta,b +

∑
j

ta,j Rd , ∀DBSj ∈ PS1 \ {DBSb} (8)

t
(1)
a,j = ta,j −

∑
j ta,j Rd

|PS1| − 1
, ∀DBSj ∈ PS1 \ {DBSb} , (9)

where |PSx| is the cardinality of the set PSx, the superscript
(x) means the probability after stage x. It can be noticed that
the first stage may violate condition (3) because ta,b and ta,j
are increased and decreased, respectively, without bounds. A
simple solution would be setting a lower bound of 0 and an
upper bound of 1 for each entry in T. However this may lead
to violating condition (6) because the amount of increase and
decrease in the probabilities may not be the same in some
cases.

To solve this problem, additional stages are added to reach
an equilibrium without violating the conditions of Section II-A
or affecting the learned history. In stage x> 1, the DBSs with
zero or negative probabilities after stage x− 1 leave the game.
The DBSs with positive probabilities are called survivals and
they equally share the negative probabilities resulted from
stage x− 1. In other words, the player set in stage x> 1
includes the survivals only, i.e.,

PSx =
{

DBSj : t
(x−1)
a,j > 0 ∧ DBSj ∈ PSx−1

}
. (10)

Since the survivals share the negative entries, their probabili-
ties are equally decreased as:

t
(x)
a,j = t

(x−1)
a,j +

∑
n t

(x−1)
a,n

|PSx|
, ∀DBSj ∈ PSx, (11)

where x> 1, DBSn ∈PSx−1 and t(x−1)
a,n < 0. Notice that

the second term of (11) is negative (i.e., the summation in
(11) is for the negative probabilities that resulted from stage
x− 1). The MPE adds several consecutive stages until all
the entries in T are not negative. Once T is updated (i.e.,
after the final stage), the user’s trajectory can be predicted
by using (1). Given a source DBS where the user starts
its current movement, a sequence of candidate DBSs in the
user’s path can be predicted according to the user’s history
(which is reflected by T). This can be done by invoking (1)
with k=1, 2, 3, ... and γi =1 for the source DBS, and then
selecting the DBS with the highest probability in each HO i.e.,

kth HO DBS = DBSw

∣∣
pw=max(pk)

. (12)
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III. HANDOVER PROCEDURE AND COST

As discussed in Section I, a reliable prediction of the user’s
trajectory allows the candidate DBSs to prepare and reserve
resources in advance, which in turn could simplify the HO
process and minimise the associated overhead and interruption
time. To investigate this claim, we consider the typical long
term evolution (LTE) X2 HO procedure as a benchmark for
the non-predictive HO scenario. In the latter, the UE measures
signals of the detectable DBSs3 and reports the result to the
serving (i.e., the source) DBS whenever the HO criteria is met.
The HO procedure consists of three major steps: preparation,
execution and completion. In the preparation phase, the source
DBS determines the target DBS and establishes a connection
with it via the X2 interface. Then the target DBS performs
an admission control, reserves resources for the UE and
some parameters related to the UE security and ciphering are
exchanged between the source and the target DBSs. In the
execution phase, the UE detaches from the source DBS and
accesses the target DBS. Finally, the HO completion phase
switches the DP path towards the target DBS [15].

In the predictive HO procedure, most of the HO preparation
steps can be done before the HO criteria is met, provided that
the prediction is accurate enough. In this case, the predicted
DBS can reserve resources for the UE in advance. Similarly,
all the necessary parameters can be exchanged between the
source and the predicted DBSs before the HO criteria is
met (i.e., advance HO preparation). When the UE sends the
measurement report indicating that a HO is required, the
source DBS evaluates this report. If the target DBS reported
by the UE is the same as the predicted DBS (i.e., correct
prediction), then the HO process proceeds with the execution
phase. If the prediction is incorrect (i.e., the predicted DBS
is not the target DBS being reported by the UE), then the
conventional non-predictive HO procedure is triggered. In the
latter case, an additional signalling is required to cancel the
resources that are reserved in the predicted DBS. Fig. 4 shows
the signalling flow diagram for these cases.

The HO signalling cost can be expressed in terms of the
delay required to transmit and process the HO messages [16].
Denote αi,j as the one way transmission cost between nodes i
and j, βi as the processing cost in node i. The HO signalling
cost C can be written as [17]:

C =
∑

αi,j +
∑

βi (13)

Since the actual HO procedure starts after the source DBS
receives the measurement report, the HO signalling cost in-
cludes the HO decision and the subsequent steps (depending
on the HO type). In other words, the advance preparation
procedure (i.e., steps a, b and c of Fig. 4) is not included in the
cost function of the predictive HO case because the advance
reservation phase is completed before the HO is triggered,
hence its timing and delay requirements are not critical. The
expected cost of the predictive HO Cpred can be written as:

Cpred = Ap Ccorr + (1−Ap)Cincorr, (14)

3 evolved node-B (eNB) in LTE terminology
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Fig. 4. Signalling flow diagram for predictive and non-predictive HO
scenarios, based on the LTE X2 HO procedure. Signalling messages in non-
predictive HO: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Signalling messages in predictive
HO with correct prediction: 6, 7, 8, 9, 10, 11, 12. Signalling messages in
predictive HO with incorrect prediction: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
Acronym ACK: Acknowledgement, SN: Sequence Number.

where Ap is the prediction accuracy, Ccorr and Cincorr are the
HO costs with correct and incorrect predictions, respectively,
which can be calculated by (13) in conjunction with Fig. 4.

Although the main parameter analysed in this paper is the
HO signalling cost, other system parameters such as the capac-
ity can be affected by the prediction accuracy. For instance, an
incorrect prediction may degrade the overall system capacity,
since it reserves resource which could otherwise be used for
other users. In addition, the time dimension may have an
impact on the overall performance. For example, a too early
reservation, even with a correct prediction, wastes the system
resources because they are reserved for a long time without
being used. However, these aspects are left to a separate study.

IV. PERFORMANCE EVALUATION

A. Mobility prediction accuracy

HO traces have been generated to assess the accuracy of the
proposed mobility prediction scheme. The considered network
topology consists of 69 hexagonal shaped DBSs. Traces for
100 consecutive days are generated where the trajecotry of
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Fig. 5. Prediction accuracy of the proposed mobility prediction model

each day consists of 10 HOs. We consider a regular user that
follows the same route every day (i.e., the HO traces have
0% random data), and a users that follows a regular route in
some days and random routes in other days. The percentages
of the random days w.r.t. the total period are 10%, 20% and
30% and they are distributed evenly across the 100 day period.
The prediction of each day’s trajectory is based on the history
learned up to the previous day. The evaluation is based on
the prediction accuracy which is defined as the ratio between
the number of correctly predicted DBSs and the total number
of the DBSs visited by the UE, where a correct prediction is
triggered only if the predicted DBS is the same as the DBS
visited by the UE and in the same order.

Fig. 5 provides the average prediction accuracy for different
values of Rd. In the regular movement scenario (i.e., 0%
random data), the proposed scheme predicts the trajectory with
an accuracy of 97− 99% for Rd≥ 0.3. However, the prediction
accuracy decreases at smaller values of Rd to reach 92%
with Rd =0.1. This can be traced to the fact that small Rd

values require more observations (i.e., a longer history) before
a reliable decision can be made. It can be noticed that the
prediction accuracy is roughly 0% when Rd = 0. In the latter
case, each trajectory does not have any effect on the updated
T as depicted by (8) and (9). Expressed differently, the model
does not build any history for the user, hence the prediction
is independent of the mobility history. It is worth mentioning
that the evaluation is performed without a training data set.
Since the prediction is dependent on the historical trajecotry,
the accuracy in the 1st day is roughly 0% irrespective of the
Rd value. As a result, the average accuracy in Fig. 5 does not
reach 100%.

With 10% random days, the average prediction accuracy is
≈ 86% for Rd in the range [0.2, 0.6]. However, the accuracy
decreases to ≈ 80% when Rd > 0.6. Since the user performs
some random movements, a high dependency on the most
recent trajecotry slightly decreases the prediction accuracy. A
similar behaviour can be observed in the 20% and the 30%
random data scenarios where the prediction accuracy reaches
a peak of 75% and 68%, respectively, when Rd in the range
[0.2, 0.4] and decreases at larger values of Rd. In other words,
reducing Rd minimises the effect of random movements on the
updated T, but it increases the required observation period.
Thus it can be said that Rd is an important design parameter

TABLE I
COST VALUES FOR HO SIGNALLING MESSAGES

Cost description Value

Transmission cost between DBSs over X2 5

Transmission cost between UE and DBS (include processing) 6.5

Transmission cost between DBS and MME 5

Processing cost at DBS 4

Processing cost at MME 5

Processing cost at S-GW 5

Cost to detach from the source DBS and access the target DBS 12
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Fig. 6. HO signalling cost with and without mobility prediction

that can be tuned for each user to reach a particular accuracy
target.

B. Handover signalling cost

Here we evaluate the potential benefits of the proposed
mobility prediction scheme in terms of HO signalling cost.
For simplicity, we follow [17] by assuming that the trans-
mission cost for different messages between the same source-
destination pair is the same irrespective of the message size.
Similarly, the processing cost for different messages at the
same node is constant. In addition, we assume that the mobility
management entity (MME) and the serving gateway (S-GW)
are located in the same location, thus the transmission delay
between these nodes is negligible. Notice that the MME/S-GW
transmission delay may be significant in vertical or inter-RAT4

HOs, however this case is not considered in this paper. Table I
provides the cost values which are based on the feasibility
study reported in [15] for the intra-LTE X2 HO procedure.

Fig. 6 provides the HO signalling cost for the non-predictive
and the predictive HO procedures, where the mobility profiles
of Section IV-A are considered for the predictive HO case.
Comparing Fig. 5 with Fig. 6 indicates that the Rd region
that offers the peak accuracy also offers the minimum HO
signalling cost. For the regular user scenario (i.e., 0% random
data), the predictive HO signalling cost is 29% less than the
non-predictive HO cost when Rd≥ 0.3. This can be traced
to the high prediction accuracy in this region (see Fig. 5)
which is translated into a reduction in the HO cost, i.e., most
of the HOs are correctly predicted and hence the procedure
for predictive HO with correct prediction is triggered in most

4 Radio Access Technology
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cases. It can be noticed that the predictive HO cost increases
rapidly when Rd < 0.1 and exceeds the non-predictive HO
cost as Rd reaches 0. This can be traced to the low prediction
accuracy in this region as shown in Fig 5.

With 10%, 20% and 30% random data and considering the
peak accuracy region of each case, the predictive HO cost is
roughly 23%, 18%, and 13%, respectively, less than the non-
predictive HO cost. It can be seen that the minimum signalling
cost offered by the predictive HO biases towards small values
of Rd as the random data increases and vice versa. This can be
linked to Fig. 5 where the peak accuracy region biases towards
small Rd values as the random data increases and vice versa,
excluding the range 0≤Rd≤ 0.1 where the learning process
and the updated transition matrix are almost independent of
the mobility history.

To generalise, Fig. 7 shows the prediction accuracy vs the
predictive HO gain in terms of signalling cost reduction w.r.t.
the non-predictive HO, where a positive (negative) gain means
a reduction (an increase) in the signalling cost. As can be
seen, the predictive HO reduces the signalling cost provided
that the prediction accuracy is higher than 40%. As depicted
by Fig. 7, a higher prediction accuracy results into a higher
gain which can reach up to 30% with Ap =100%. However,
when Ap< 40% the predictive HO increases the signalling
cost by up to 20% as compared with the non-predictive HO.
Thus it can be concluded that the predictive HO management
strategies require a lower bound for the prediction accuracy in
order to be effective in reducing the signalling cost.

V. CONCLUSION

In this paper, we developed a mobility prediction model
that can be used in predictive HO management strategies. A
trajecotry dependency parameter is proposed to control the
model’s reaction to random and less frequent movements.
The LTE X2 HO procedure is considered as a benchmark
for the conventional non-predictive HO strategy. In addition,
the standard procedure is adapted to the predictive scenario in
order to evaluate its signalling cost. The latter is modelled as a
function of the transmission and the processing delays for each
message involved in the HO process. Numerical results show
that the predictive HO strategy can significantly reduce the
signalling cost. Moreover, the prediction accuracy is found to
be an important parameter and a lower bound for the accuracy

is required to minimise the signalling overhead. Although
an appropriate setting of Rd could improve the prediction
accuracy for random users, a hybrid prediction technique
consisting of mobility history along with dynamic movement
prediction (e.g., speed and probable angle of movement) may
give better results.

ACKNOWLEDGEMENT

This work was made possible by NPRP grant No. 5-1047-
2437 from the Qatar National Research Fund (a member
of The Qatar Foundation). The statements made herein are
solely the responsibility of the authors. We would like to
acknowledge the support of the University of Surrey 5GIC
members for this work.

REFERENCES

[1] J. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. Reed, “Femto-
cells: Past, present, and future,” IEEE J. Sel. Areas Commun., vol. 30,
no. 3, pp. 497–508, April 2012.

[2] J. Hoydis, M. Kobayashi, and M. Debbah, “Green small-cell networks,”
IEEE Veh. Technol. Mag., vol. 6, no. 1, pp. 37–43, March 2011.

[3] Nokia Siemens Networks, “2020: Beyond 4G, Radio
Evolution for the Gigabit Experience,” White Paper,
August 2011. [Online]. Available: http://nsn.com/file/15036/
2020-beyond-4g-radio-evolution-for-the-gigabit-experience

[4] 3GPP, “Study on small cell enhancements for E-UTRA and
E-UTRAN: Higher layer aspects,” Tech. Rep., December 2013,
3GPP TR 36.842 version 12.0.0 Release 12. [Online]. Available:
http://www.3gpp.org/DynaReport/36842.htm

[5] H. Ishii, Y. Kishiyama, and H. Takahashi, “A novel architecture for LTE-
B :C-plane/U-plane split and phantom cell concept,” in Proc. of IEEE
Globecom Workshops, December 2012, pp. 624–630.

[6] I. Godor et al., “EARTH project deliverable D3.3: Final report
on green network technologies,” July 2012. [Online]. Available:
http://bscw.ict-earth.eu/pub/bscw.cgi/d70472/EARTH WP3 D3.3.pdf

[7] S. Liu, J. Wu, C. H. Koh, and V. Lau, “A 25 Gb/s(/km2) urban wireless
network beyond IMT-advanced,” IEEE Commun. Mag., vol. 49, no. 2,
pp. 122–129, February 2011.

[8] 3GPP, Nokia Siemens Networks, “Mobility statistics for macro and
small cell dual-connectivity cases,” Tech. Rep., 3GPP TSG-RAN WG2
Meeting , Chicago, USA, 15–19 April 2013. [Online]. Available:
http://www.3gpp.org/DynaReport/TDocExMtg--R2-81b--30048.htm

[9] A. Capone, A. Fonseca dos Santos, I. Filippini, and B. Gloss, “Looking
beyond green cellular networks,” in Proc. of 9th Annual Conference on
Wireless On-demand Network Systems and Services, January 2012, pp.
127–130.

[10] J. R. Norris, Markov chains. Cambridge university press, 1998.
[11] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Next place

prediction using mobility markov chains,” in Proc. of the 1st ACM
Workshop on Measurement, Privacy, and Mobility, 2012.

[12] D. Katsaros and Y. Manolopoulos, “Prediction in wireless networks by
markov chains,” IEEE Wireless Commun., vol. 16, no. 2, pp. 56–64,
April 2009.

[13] N. Amirrudin, S. Ariffin, N. Malik, and N. Ghazali, “User’s mobility
history-based mobility prediction in LTE femtocells network,” in Proc.
of IEEE International RF and Microwave Conference, December 2013,
pp. 105–110.

[14] H. Abu-Ghazaleh and A. Alfa, “Application of mobility prediction in
wireless networks using markov renewal theory,” IEEE Trans. Veh.
Technol., vol. 59, no. 2, pp. 788–802, February 2010.

[15] 3GPP, “Feasibility study for evolved Universal Terrestrial Radio Access
(UTRA) and Universal Terrestrial Radio Access Network (UTRAN),”
Tech. Rep., October 2012, 3GPP TR 25.912 version 11.0.0 Release 11.
[Online]. Available: http://www.3gpp.org/DynaReport/25912.htm

[16] J. Ho and I. Akyildiz, “Local anchor scheme for reducing signaling costs
in personal communications networks,” IEEE/ACM Trans. Netw., vol. 4,
no. 5, pp. 709–725, October 1996.

[17] L. Wang, Y. Zhang, and Z. Wei, “Mobility management schemes at radio
network layer for LTE femtocells,” in Proc. of IEEE 69th Vehicular
Technology Conference VTC Spring, April 2009.

IEEE ICC 2015 - Mobile and Wireless Networking Symposium

3944


