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Abstract—5G is considered as the ecosystem to abet the
ever growing number of mobile devices and users requiring an
unprecedented amount of data and highly demanding Quality
of Experience (QoE). To accommodate these demands, 5G
requires extreme densification of base station deployment, which
will result in a network that requires overwhelming efforts
to maintain and manage. User mobility prediction in wireless
communications can be exploited to overcome these foregoing
challenges. Knowledge of where users will go next enables
cellular networks to improve handover management. In addition,
it allows networks to engage in advanced resource allocation and
reservation, cell load prediction and proactive energy saving.
However, anticipating the movement of humans is, in itself,
a challenge due to the lack of realistic mobility models and
insufficiencies of cellular system models in capturing a real
network dynamics. In this paper, we have evaluated Artificial
Intelligence (AI)-assisted mobility predictors. We model mobility
prediction as a multi-class classification problem to predict
the future base station association of the mobile users using
Extreme Gradient Boosting Trees (XGBoost) and Deep Neural
Networks (DNN). Using a realistic mobility model and a 3GPP-
compliant cellular network simulator, results show that, XGBoost
outperforms DNN with prediction accuracy reaching up to 95%
in a heterogeneous network (HetNet) scenario with shadowing
varied from 0dB to 4dB.

Index Terms—Mobility prediction, AI, self- organizing net-
works (SON), Deep Neural Networks, XGBoost, HetNets.

I. INTRODUCTION

The volume of capacity-hungry devices is expected to rise
exponentially with the increase in bandwidth demand from
the end-users. To cope with the anticipated challenge of
providing a 1000x increase in capacity, network densification
has emerged as the primary method future networks will rely
on. The deployment of heterogeneous types of base stations
(BS) such as macro cells and smalls cells will be necessary
to alleviate the issue. However, as dense deployments of
heterogeneous types of cells become the norm, intricacy in
managing the network mounts. This complexity will affect
all aspects of cellular network management from resource
allocation, mobility, and energy saving to the associated
increase in mobile operators capital expenditures and oper-
ational expenditures (CAPEX/OPEX) .

To address these challenges, Self-Organizing Networks
(SON) have arisen as the go-to solution. With SON, man-
ually executed operations, such as network configuration,
optimization, and maintenance, can now be automated. How-
ever, current SON solutions are reactive in nature - that is
SON functionalities will only intervene once a problem has

occurred. This characteristic contradicts with 5G’s ambitious
quality of service which requires a proactive mode of opera-
tion for SON functions. Achieving this proactivity is possible
by anticipating the movements of users and forecasting the
future network state using information readily available in the
network which referred to as Big Data. Given these proactive
predictive capabilities, a more effective and efficient method
of network resource allocation can be put in place [1].

To predict where a user will go next is one of the key com-
ponents of a proactive SON. This can be done by forecasting
the future locations of the users in terms of the associated
base stations. This mobility prediction relies on the notion
that activities and movements of mobile users are predictable
to a certain extent as verified by the work [2]. According to
this study, user’s daily mobility has a regularity with a 93%
average predictability despite the randomness of individual
trajectories.

The majority of the current studies in mobility predic-
tion leverage analytical-based techniques, particularly Markov
chain. Its popularity can be attributed to minimal space/time
complexity relative to other techniques. One particularly
promising work [3] harnesses semi-Markov model capabilities
for spatiotemporal mobility prediction in cellular networks.
A maximum prediction accuracy of 90% is achieved in
the experimental evaluation utilizing actual network traces.
However, considering the computational resources available
in the present-day, AI-based mobility predictors are viable
alternatives. Works [4] and [5] exploit Machine Learning
(ML) for classification of the spatial trajectories through
supervised learning using Support Vector Machines (SVMs).
Results show that accuracy of the predictions reach more than
90% using regular mobility movements. Using deep learning,
authors in [6] propose a mobility prediction in mobile ad-hoc
networks. The best performance of their mobility predictor
shows a mean square error (MSE) of 5.29e-08 in the validation
set.

Although results are auspicious, the suitability for practical
applications is inadequate for two reasons. First, [4], [5] and,
[6] all use unrealistic mobility models. [6] uses the random
waypoint model (RWP) which clearly fails to capture the
mentioned degree of regularity in human movement. Though
[4] and [5] incorporate models better than RWP, they design
the users to roam around a cellular network following no
realistic route. In addition, [4] and [5] both adopt unrealistic
cellular system models. In [4], the cellular network used is



composed only of omnidirectional base stations, while in
[5] base stations are represented by irregular polygons, both
insufficiently reflect a modern cellular network setup.

This paper will overcome these limitations by leveraging
the core idea of [3] using AI instead of semi-Markov model.
Moreover, instead of using unrealistic human movement pat-
terns, realistic traces are generated using a traffic simulator
named Simulation of Urban Mobility (SUMO). Combined
with these realistic mobility patterns, is a realistic cellular
network system created using a Python-based cellular network
simulator called AI4Networks Simulator.

The main contributions of this paper can be summarized as
follows:

1. A novel set of input feature combination composed
of base station camping history, current cell association and
sojourn time which refers to the period a user stayed in one
cell. Additionally, handover locations are also used to further
improve the prediction accuracy.

2. Current papers on mobility prediction use unrealistic
mobility patterns of human movements. In this paper, mobility
model used, though synthetic, captures a realistic movement
of users. In addition, a real road topology is also used for
simulation.

3. The cellular network setup is also realistic using a HetNet
scenario with base station association based on received
signal strength and incorporates shadowing. Current papers
on mobility prediction use only one type of base station and
do not consider the effect of shadowing.

The rest of the paper is organized as follows: Section II de-
scribes the Mobility prediction model; Results are illustrated
and evaluated in Section III; and Section IV concludes the
paper.

II. REALISTIC MOBILITY PREDICTION
FRAMEWORK

The suitability and practical application of the results from
this paper to a real-world scenario are achieved in three ways:
1) by using a synthetic but highly realistic mobility pattern,
2) by incorporating a realistic cellular network scenario which
captures events like handover and incorporates shadowing and
3) ease in modeling the mobility predictor leveraging the
power of AI. The process of future base station association
prediction is shown in Figure 1. This part of the paper will
discuss the user mobility model and cellular model as well
as the applied AI techniques used to capture mobile user
mobility.

Figure 1: Realistic AI- Assisted Mobility prediction frame-
work

A. Realistic User Mobility Model

SUMO is a free, open source traffic simulator which
supports network importing and demand modeling [7]. Other
traffic simulators are available, but SUMO’s ability to create a
realistic mobility model using activity-based traffic scenarios
sets it apart. Location traces extracted from SUMO exhibit
high dynamic characteristics that are intrinsic to fashion a
realistic mobility prediction.

Figure 2: Creating Realistic Road Map from SUMO

To generate mobility traces, SUMO needs two mandatory
inputs, a network file and a population definition file. A
network file describes roads and intersections where the
simulated vehicles will travel. Road topology can either be
created manually or automatically by converting an open
source map (OSM) network into a SUMO network as shown
in Figure 2. The second input needed contains a description
of the population inside the network. This general statistical
information includes the number of households, the locations
of houses, schools and workplaces, free time activity rate, etc.
By default, population activities involve travel from home to
work or school. However, additional trips can be generated
using the ‘free time activity rate’ attribute. This attribute
corresponds to the probability that in a given day, a household
will have free time activity. Values can be set from 0 to 1.
The higher the value, the more likely that the population will
perform free time activities which can be considered as a
proxy for increasing randomness in trajectories.

Populations inside the network are set to follow a shortest-
path, also called optimal path, model. This means that the
simulated vehicles will traverse the route that will take them
to the destination the fastest. However, to add randomness,
the option exists to assign weights randomly by a factor µ. By
doing so, edge weights for routing are dynamically distorted
in a random manner. The degree of randomness will depend
on the value drawn uniformly from [1, µ]. Every time an edge
weight is determined, the randomization is performed so that
a vehicle could select a diverse path. This randomness is a
good way to simulate the use of alternative routes.

B. Realistic Cellular Network Model

AI4Networks Simulator is a cellular network simulator built
in Python for 5G and beyond networks in compliance with
3GPP Release 15 [8]. It is a modular, flexible and versatile
simulator supporting advanced features like adaptive numerol-



ogy, handover and futuristic database-aided edge computing
to name a few.

A representative cellular network system, as shown in Fig-
ure 3, can be created by defining the base station parameters
in the site information, such as location, type (macro or
small cell), height and transmit power. Aside from that, to
capture the dynamics of a real network, shadowing can be
incorporated in the site information. AI4Networks Simulator
supports mobility models, such as random waypoint, SLAW,
and Manhattan, however, traces from external sources like
SUMO can easily be converted into a simulator readable
format before importing for simulation. Using AI4Networks
Simulator, mobility traces from SUMO can be converted into
a realistic base station association that is used for mobility
prediction.

Figure 3: Sample heterogeneous network layout with sector-
ized BSs, omnidirectional BSs (square), small cells (triangle)
and UEs (dots).

C. AI-Based Classification Techniques

In this paper, future base station association is modeled
as a multi-class classification problem. With classification,
labels of the data points are predicted by mapping input
features (X) to discrete labels (y). In our study, the user’s
trajectory is converted into corresponding cells it camps on
during its course. Input features (X) include the history of
cell camping, sojourn time (the period a user stays on a cell),
and handover location while next BS cell IDs are the discrete
classes (y). Two techniques are evaluated to predict the user’s
next cell association. One is Machine Learning (ML) based
called Extreme Gradient Boosting (XGBoost) and the other
falls under the Deep Learning (DL) family known as Deep
Neural Networks (DNN). These two techniques are chosen
due to their promising prediction accuracy as verified by the
work in [9].

a) Extreme Gradient Boosting (XGBoost): XGBoost is a
popular type of gradient boosting algorithm which belongs to
a ML category known as ensemble learning. Techniques under
this category train several learners to perform the same task.
In XGBoost, multiple regression trees, called weak learners,
are trained and then converted into a single superior learner,
which is the combination of the decision results of all the
weak learners. Mathematically this can be expressed as [10]:

ŷi =

K∑
k=1

fkxi, fk ∈ F (1)

where F is the set of all possible weak learner and K is the
total number of weak learners.

XGBoost searches for the optimal parameters by minimiz-
ing the loss function given by:

L =
∑
i

l(ŷj , yi) +
∑
k

Ω(fk) (2)

where Ω(fk) = γT +
1

2
λ‖ω‖2 (3)

where l is the loss function that calculates the difference
between the target value yi and the predicted value ŷj , Ω
is the regularized term which measures the complexity of the
model, T is the total number of leaf nodes with ω representing
the weight of the leaf nodes, γ is the learning rate, and λ is the
constant coefficient controlling the degree of regularization of
fk.

Training the ensemble model in an additive manner is
more efficient and avoids the complexities of using traditional
methods in Euclidean space, therefore, we will need to add
ft in order to optimize which forms a new loss function. At
time step t:

L(Θ)(t) =

n∑
i=l

l(yi, ŷ
(t−1) + ft(xi)) + Ω(ft) (4)

L(Θ)(t) =

n∑
i=l

[gift(xi +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T∑
j=1

ω2
j

(5)

where y(t)L represents the prediction of the i-th instance at
the t-th iteration, while the first and second order gradient
statistics on the loss function are given as gi and hi respec-
tively.

In this paper, we used grid-search to find the optimal
performance of XGBoost. Based on the results, best prediction
accuracy is observed using the minimum child weight value
of 5, maximum depth of 3, column sample of 0.8, step size
of 50 and shrinkage value of 0.01. Shrinkage η supervises
the learning rate and controls over fitting. Other parameters
used are set to their default values.

b) Deep Neural Networks (DNN): Deep Neural Net-
works belong to the family of Artificial Neural Networks
(ANN) composed of multiple hidden layers between input
and output layers. In this paper, we have implemented a feed-
forward deep neural network to predict the next base station
mobile users will enter. In a feed-forward network, the flow
of information is unidirectional. This means information flow
is from input going to the hidden layers and finally to the
output layer without any loop and not forming any cycle.

Performance of DNN depends on the choice of activation
functions. In our model, we have used the Rectified Linear



Unit (ReLU) activation function on the input and hidden
layers and softmax function on the output layer. One particular
advantage of ReLU is that it speeds up the training of the
neural network by rapidly accelerating the convergence of
stochastic gradient descent compared to the other functions
like sigmoid and tanh. Mathematically, ReLU is represented
as:

f(x) = max(0, x) (6)

where f(x) is the activation, x is the input data, and the
function max(0, x) is a non-linearity that is applied element-
wise. Simply say, if x < 0 , f(x) = 0 and if x >= 0 , f(x)
= x.

On the other hand, softmax is typically the preferred activa-
tion function for the output layer especially for classification
tasks. For multi-class classifications, decimal probabilities
are assigned to each class using softmax. The sum of all
decimal probabilities should be equal to one which is not the
case in other activation functions such as sigmoid function.
This additional restriction helps in a more rapid training
convergence period. Mathematically, the softmax function is
given by:

softmax(z) = σ(z)j =
ezj
K∑

k−1

j = 1, ...,K (7)

where input z is defined as:

z = w0x0 + w1x1 + ...+ wmxm =

m∑
i=0

wixi = wTx (8)

where x is the feature vector of a single training sample,
w is the weight vector, and w0 is the bias unit.

For mobility prediction, a DNN with a depth of 4 hidden
layers and a width of 60 neurons each is used. Several other
combinations of depth and width are evaluated but none
exceeds the performance of the final model. The size of the
output layer depends on the number of the output classes.
Predictive performances of the models are evaluated using k-
fold cross-validation with k = 4 and n = 2. This helps in
judging how the trained model will perform when feed with
unseen data. Models are run with a batch size of 32 and 300
epochs for best test accuracy rate.

D. Mobility Prediction Model

The first step in our mobility prediction is to generate
realistic mobility traces. To do so, SUMO is utilized. A
population is initially configured with activities involving only
trips from home to work and vice versa using the shortest
path. This is done by configuring a population all made up of
working adults, setting the unemployment rate to 0 and setting
car preference equal to 1. With this setting, all individuals in
the population will go to work using their cars. This set up
is the baseline scenario, tagged as Scenario 1, which reflects
the regular human mobility in deterministic trajectories. In
this scenario, no randomness is involved in terms of the

population’s activity or routes traversed. In addition, two more
scenarios are created. In Scenario 2, we added an additional
trip each day aside from the regular home to work routine by
setting the free time activity rate equal to 1. The destinations
of these additional trips are chosen randomly. This captures
the randomness in real human movement accounting for other
activities outside their routines such as shopping, visiting
friends or leisure. Thus, we describe Scenario 2 as having
medium randomness. However, the route from home to work
still follows a shortest-path model. To capture the randomness
on the path a real human might take outside its regular route,
for example taking a detour due to traffic congestion or road
construction, Scenario 3 is created. Here, a factor of 10 is
used to update the weights of each edge every time the vehicle
passes by. With this, high randomness is expected for Scenario
3.

Figure 4: System Model of the Mobility Prediction.

A network or road map, 800m x 800m in size, is initially
used. This grid-type map which the vehicle can traverse
is our baseline network. An example of one user’s origin
and destination location is illustrated in Figure 4. This base
network is used for simplified extraction of traces and model
training. However, realistic roads are not always grid-like. For
this reason, we have also used a real map of size 1.6km x
1.6km from Figure 2 including the University of Oklahoma -
Tulsa campus. This setting will test how effective our models
will perform in a real road network.

SUMO is run initially to generate the populations mobility
traces equivalent to 10 days with one-second granularity. In
addition, to test the effect of increasing the size of input data,
we run simulations which provide the equivalent of 30-days
and 60-days of population movement.

Using AI4Networks Simulator, two sets of cellular network
models are created. The first is composed of 7 omnidirectional
macro cells and the second set is a HetNet consisting of 7
macro cells, each with 3 sectors and 3 uniformly distributed
small cells per sector. This results in a total of 85 base stations,
21 macro cells and 64 small cells as shown in the system
model in Figure 4. The first setup is used to identify the
best input feature combination and determine additional input
features to help further improve the prediction accuracy. The



second setup is used to test the mobility prediction model in
a more realistic cellular system. To capture the dynamics of
a real cellular network, values of shadowing is varied using
values of 0dB, 2dB and 4dB.

Mobility traces from SUMO are fed into the AI4Networks
Simulator to get the base station association at every time step.
The output cell association of the AI4Networks Simulator is
then processed and is used for mobility prediction. Approxi-
mately 90% of the data are used for the training set, and the
remaining 10% are utilized to test the prediction accuracy. The
training data set is further split into two for training (75% of
90%) and validation (25% of 90%) by using four-fold cross-
validation. The cross-validation uses one-fold for the testing
set and the union of the rest of the folds for the training set.
For both prediction techniques, we have simulated different
input features combinations of current location, sojourn time
and previous cells to determine the best one. Then, handover
location is incorporated to determine if it will increase the
prediction accuracy before finally testing the models in a
HetNet setup and using a real road network.

III. RESULTS AND DISCUSSION

Using the base setup composed of 7 omnidirectional macro
cells with no randomness in the population’s mobility, Sce-
nario 1, we identified the best input feature combination that
will yield the highest prediction accuracy. As seen from the
results in Figure 5, using the current cell alone to predict the
next cell will not produce desirable results. Adding sojourn
time as an input feature will result in a prediction of higher
accuracy. However, knowledge of the previous cell the mobile
user camped provides the biggest leap in accuracy. Adding
more previously visited cells does not affect the prediction
accuracy substantially. Based on the results, one previous
cell, the current cell and the sojourn time are the best input
features combination in predicting future cell association. It
is notable that the performance of the prediction models is
greatly affected by shadowing. From more than 98% accuracy
in 0dB shadowing, it drops to 88% and 82% if 2dB and
4dB of shadowing are incorporated respectively. It is also
apparent that performance of the two classification algorithms
are almost equal once we added previous cell/cells as an input
feature.

Figure 5: Determination of best input feature combination.

A study [11] uses location coordinates as one of the input
features to model taxi drivers’ behavior to predict their future
destinations. Inspired by the usefulness of this idea, we have
added the handover location, expressed as coordinates, as an
input feature to determine its effect. Using Scenario 1 and
the best input features identified, the effect of incorporating
handover location on prediction accuracy is evaluated. Based
on the results in Figure 6, a 2% to 4% increase in the accuracy
can be achieved with 2dB and 4dB shadowing by adding
handover location. Accuracy with 0dB shadowing is already
very high but even higher results are obtained.

Best input features plus handover location are the input
features used in mobility prediction in a HetNet cellular
network. With a HetNet, more base stations are involved
resulting to more categories to choose from, and thus it is
more challenging to predict the next base station. Figure 7
shows the mobility prediction accuracy results of the two
algorithms in 3 different randomness scenarios. Similar to the
previous results, the effect of shadowing in the accuracy is
pertinent. As randomness in trips made is added (scenario
2), accuracy of prediction decreases to 58.54%-84.92% and
further reduces to 54.07%-80.07% when randomness in route
used is incorporated (scenario 3). However, the most interest-
ing result is XGBoost outperforming DNN for all shadowing
values and all scenarios simulated. This observation conforms
with results in [9] where the authors conclude that XGBoost is
the current technique of choice for mobility prediction. Also
from [9], authors conclude that DNN’s performance stabilizes
by adding more input features. In our case, as the number of
classes increases, i.e., a HetNet with 84 classes, DNN will
require more input features to perform better.

Figure 6: Effect of incorporating HO location in the mobility
prediction.

The effect of increasing the training data can be reflected in
the results shown in Figure 8a. Results of a 10-day simulation
with 4dB shadowing are compared with the results of 30-days
and 60-days of mobility traces. Results show that increasing
the training data will increase the prediction accuracy. Im-
provement is greater in XGBoost as neural networks tend to
require more input features with the increase in the input data.

Figure 8b shows the result of prediction accuracy using a
real road topology. Using Scenario 3 with high randomness,



Figure 7: Mobility prediction model performance in HetNets.

Figure 8: a) Effect of increasing the data set b) Prediction
performance in a real road network

and mobility traces run for 60 days, XGBoost performs better
than DNN. It can also be noticed that 73.72% accuracy can
be achieved with 4dB shadowing, higher than 69.88% using
a synthetic grid-type map. This result is because the shortest-
path from origin to destination using the realistic road map has
fewer edges. This means a fewer number of turns is required
than in the grid type map making it more predictable.

Figure 9: Training and Prediction Time Comparison

Comparison of the training and prediction time of the two
algorithms shown in Figure 9 shows that XGBoost is faster in
both training and prediction duration. This happens as training
a DNN needs a repeated scanning of the entire training data
set before reaching the asymptote.

IV. CONCLUSION

In this paper, we evaluated two mobility prediction models
leveraging the power of AI in the form of XGBoost and
DNN. Experimental results show that using one previously
camped-on BS, current BS association and sojourn time as
input features yield the best prediction accuracy. Moreover,
incorporating the handover location and increasing umber of
training sample further improve the performance of the mod-
els. Comparison of the performances of the two algorithms
show that XGBoost and DNN perform similarly when using a
smaller number of base stations, however, XGBoost triumphs
against DNN in a HetNet scenario where more base stations
are involved. XGBoost also showed dominance when using
an actual road topology with accuracy of 74% to 95% in a
scenario with high randomness.

For future works, we will analyze how the models will
perform on a much larger scale together with testing different
variations of train-test data split like 70%-30% and 80%-20%
partition. We will also evaluate our models using real data
from a live network. In due course, we will apply the findings
in this paper to some practical applications, such as proactive
handover management, load-balancing and energy saving.
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