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Abstract—Existing works on user mobility in unmanned aerial
vehicle (UAV)/drone-based aerial networks consider either fixed
height drone base stations (DBSs), or are limited to two-tier
networks only, and do not take into account tier association
biasing, which is important for developing intelligent traffic
offloading and load balancing schemes to support the diverse
use cases enabled by emerging networks. This paper addresses
these gaps by analyzing the impact of user mobility in a multi-
tier UAV heterogeneous network at varying heights serving
ground users and taking into account the biased average receive
power association, where each tier has an independent cell range
extension (CRE) factor. We evaluate the handover probability
of a mobile user by first deriving the distance distributions to
the serving DBS and the probability of user association with
a DBS of a specific tier. The quantification and insights from
our theoretical analysis, corroborated with numerical simulations
reveal that the probability of handover (dependent on the CRE
factor of the tiers, height of the DBSs and velocity) must
be optimized in tandem with coverage probability for optimal
network performance.

Index Terms—UAV/drone based aerial networks, emerging
cellular networks, mobility, handover probability, multi-tier
networks, cell range extension.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are envisioned to be
part of emerging wireless cellular networks because of their
capability to enable rapid on–demand services and expand
coverage and capacity at a low cost by acting as aerial/drone
base stations (DBS) [1], [2]. They can thus serve in emergency
scenarios such as natural disasters when a ground base station
(BS) malfunctions, or complement existing BSs for short-
term social gatherings when they are overloaded with user
equipments (UEs) to provide service in that region [1].

In order to support the heterogeneous requirements of a
diverse range of future applications such as high data-rate
extended reality, ultra-reliable low latency communication for
autonomous vehicles and energy efficient communication for
energy constrained surveillance systems [3], both cellular
and aerial networks are envisioned to have a dense multi-
tier heterogeneous network architecture [1], [3], [4]. The
terrestrial BSs and aerial DBSs will be densely deployed to
improve the area spectral efficiency (ASE) of the network.
Dense deployment of BSs brings the UE closer to them,
thus reducing the pathloss and improving the received signal
power. In addition, it enables reuse of the limited frequency
spectrum to enhance network capacity [3]. A drawback of
dense deployment is that the cell size reduces resulting in
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frequent handovers. Continuous connectivity becomes chal-
lenging, and these frequent handovers lead to a decline of
user experience and heavy signaling overheads [5].

Therefore, for such dense cellular networks, accurate mobil-
ity modeling of the network is essential for the optimization
of key mobility-related performance indicators (KPIs) such
as handoff rate, handoff probability, ping-pong events and
sojourn time, that are crucial for UE quality of experience [5].
Two approaches have been adopted to analyze the aforemen-
tioned KPIs, namely, 1) trajectory based analysis; evaluates
the number of intersections between the user trajectory and
the cell boundaries and 2) measurement based analysis; based
on received signal power at the UE [6], [7].

In [8], the measurement based approach was adopted and
the handover probability was analyzed for a multi-tier 3D
UAV network where each tier had a different altitude. In [9],
authors adopted the same approach to analyze the handover
probability when the DBSs are hovering in random directions
at a constant height. They analyzed the scenarios of DBSs
moving with the same speed and different speeds and showed
that the same speed scenario is equivalent to the single-tier
terrestrial cellular network, in which the BSs are static and
UEs are mobile. The sojourn time and handover rate for a
fixed height UAV network was analyzed in [10] and it was
shown that the handover rate is minimum when DBSs move
with the same speed.

The trajectory based approach was adopted in [11] to ana-
lyze the handover rate for mobile aerial UEs of varying alti-
tudes served by a terrestrial network. It was shown that vertical
movements have a low handover rate. In [12], handover rate
for a two-tier terrestrial network with varying antenna height
and biased association was studied. By replacing the antenna
heights with DBS heights, one can obtain the handover rate
for an aerial cellular network.

In these previous works, either the nearest distance asso-
ciation without tier association biasing was investigated [8]–
[11], or the analysis was limited to that of a two-tier network
only [12]. Consideration of association bias corresponding
to each tier is important as we can flexibly control the
load of each tier by tuning the cell range extension (CRE)
factor, and thus develop intelligent traffic offloading and load
balancing schemes needed to cater for the needs of emerging
heterogeneous networks. It was shown in [13], that multi-
tier terrestrial networks with biased averaged received power
association lead to non-convex cell boundaries making the
analysis non-trivial. Following a similar approach to [13],
in this work, we present a general framework to analyze
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Fig. 1: System Model.

the handover probability of a multi-tier aerial network with
varying altitudes, where UE association is based on the biased
averaged received power. While authors in [13] adopted an
approximation to derive the approximate handover probability,
we utilize the theory of family of curves to obtain the exact
expression of handover probability, which is an important KPI
used to calculate the sojourn time and handoff rate [6], [10],
[13]. These KPIs enable analysis of other important network
parameters such as channel occupancy time and call dropping
probability during handoff. For deriving the handover prob-
ability expression, we also derive the association probability
and distance distribution expressions. The results and analysis,
corroborated through numerical simulations, show that tier-
biasing and altitude adjustment can lead to a lower handoff
probability and therefore, they must be set appropriately.

II. SYSTEM MODEL

We consider a K-tier aerial network where the spatial
distribution of the DBSs of the k-th tier, k ∈ {1, 2, ...,K},
follows an independent homogeneous Poisson Point Process
(PPP) Φk with intensity Λk. Each tier is assumed to consist
of DBSs at different altitudes. Without a loss of generality,
the mobile user (UE) is assumed to be at the ground level.

For modeling the altitudes, we propose that a DBS can
hover at M possible heights. The set of heights for DBSs be-
longing to the k-th tier is given as Hk = {hk1, hk2, ..., hkM},
where hkm denotes the m-th height in tier-k. The density of
DBSs of height m in tier-k is denoted by λkm, respectively,
where Λk =

∑M
m=1 λkm. Note that this model is general

and the values of heights and corresponding densities may be
different for each tier. Increasing the value of M , this model
can scale to large networks with DBSs at many different
altitudes 1.

Association Criteria: Different from the existing works [8]–
[12], the UE associates to the DBS which provides the max-
imum biased average receive power. The association criteria,
at time t, can be expressed as

Dt(j, ν) = arg max
yk∈Φk
∀k,m

PkBk

(
∥xt − ykm∥2 + h2

km

)−α
2

, (1)

1This model and the analysis in this work is also valid for terrestrial
networks where BSs have antennas at different heights.

where Dt(j, ν) is the serving DBS at height hjν belonging
to tier-j, xt is location of the UE at time t, ykm denotes the
DBS location of the k-th tier and height hkm, Pk is the DBS
transmission power of tier-k, Bk is the cell range extension
(CRE) bias factor for tier-k and α is the path-loss exponent.
The biased averaged received power association rule in (1)
within multi-tier DBSs leads to non-convex cell boundaries
making the analysis non-trivial [13].

At time t = 0, a typical UE is assumed to be at the origin,
i.e., x0 = (0, 0) and based on (1), the UE associates to a
DBS of tier-j at height hjν , denoted by D0(j, ν).2 Location
of this serving DBS in the xy-plane is denoted by y0 which
can be represented in polar form as y0 = r0∠θ0. As shown
in Fig. 1, the UE is assumed to move in a straight line along
the positive x-axis with a constant velocity v for a duration
T . UE movement in any direction can be modeled as this
straight-line along the positive x-axis due to the stationarity
and isotropicity of the homogeneous PPP [6], [13]. Position
of the UE at any intermediate time t, is given as xt = (vt, 0)
and its final location is denoted by xT = (vT, 0). At arbitrary
time t, the UE to serving DBS radial distance (distance along
the xy-plane) is rt = ∥xt − y0∥ = ∥xt − r0∠θ0∥ = r20 +
v2t2 − 2r0vt cos(θ0). The UE to serving DBS distance in 3D
is obtained as δ⋆t,j,ν =

√
r2t + h2

jν .

III. PROBABILITY OF TIER ASSOCIATION &
DISTANCE DISTRIBUTIONS

Proposition 1. The probability density function (PDF) of
distance between UE and the nearest DBS of tier-k and height
m at time t, denoted as δt,k,m =

√
r2t + h2

km, is given as

fδt,k,m
(z) = 2πλkmze−πλkm(z2−h2

km)u
(
z2 − h2

km

)
, (2)

where u(·) denotes the unit step function.

Proof: The cumulative distribution function (CDF) of δt,k,m
is given as Fδt,k,m

(z) = Pr
(√

r2t + h2
km < z

)
where r2t is

exponential random variable (RV) with mean 1
πλkm

. As the
distances are positive, the CDF can be written as Fδt,k,m

(z) =
Pr

(
r2t < z2 − h2

km

)
which is evaluated to yield

Fδt,k,m
(z) =

{
0 z2 ≤ h2

km

1− e−πλkm(z2−h2
km) z2 > h2

km

(3)

Taking the derivative of (3) yields (2).
From (2), it can be noted that the distance δt,k,m will always
be greater than the DBS height.

Proposition 2. The minimum distance from the UE,
at time t, to DBSs of all tiers and heights exclud-
ing the tier-j DBSs at height ν, is given by δt,!j,!ν =
min{k,m}\{k=j &m=ν} βjkδt,k,m. The CDF of δt,!j,!ν is

Fδt,!j,!ν (z) = 1− e

−π
∑

{k,m}\
{k ̸=j&m ̸=ν}

λkm(β2
kjz

2−h2
km)u(β

2
kjz

2−h2
km)

,

(4)

2Without a loss of generality, the UE and DBS location is characterized
only in the xy-plane and the height, taken along z-axis, is mentioned
separately.



where
∑

{k,m} is shorthand notation for
∑K

k=1

∑M
m=1 and

βkj =
(

PkBk

PjBj

) 1
α

= β−1
jk .

Proof: The CDF of δt,!j,!ν is expressed as
Fδt,!j,!ν (z) = Pr

{
min{k,m}\{k=j &m=ν} βjkδt,k,m < z

}
=

1 − Pr
{
min{k,m}\{k=j &m=ν} βjkδt,k,m > z

}
. As the

distances are independent, the CDF can be written as

Fδt,!j,!ν (z) = 1−
∏

{k,m}\{k=j &m=ν}

(
1− Fδt,k,m

(βkjz)
)
,

(5)

where
∏

{k,m} is shorthand for
∏K

k=1

∏M
m=1. Substituting the

CDF from (3) into (5) and after some simplification yields (4).

It can be noted that βkj ∈ (0,∞). βkj > 1 implies a bias
towards tier-k, whereas βkj < 1 implies a bias towards the
serving tier-j. Using results from Propositions 1 and 2, we
derive the probability of association with a DBS of height hjν

in tier-j and the distribution of UE to serving DBS distance
given that the UE is associated with a DBS at height hjν in
tier-j. These results are given in the following Proposition 3
and 4, respectively.

Proposition 3. Let A⋆
j,ν denote the event that the typical UE

is served by a tier-j DBS at height hjν , then the probability
of event A⋆

j,ν is given as

Pr
(
A⋆

j,ν

)
= 2πλjν

∫
z>hjν

e−π
∑

{k,m} λkm(β2
kjz

2−h2
km)u(β

2
kjz

2−h2
km)dz.

(6)

Proof: The UE is associated with a DBS at height hjν in tier-
j if δt,j,ν < βjkδt,!j,!ν . Therefore, probability of event A⋆

j,ν

is expressed as Pr
(
A⋆

j,ν

)
= Pr (δt,j,ν < βjkδt,!j,!ν). We can

evaluate this probability using the CDF of δt,!j,!ν and PDF of
δt,j,ν as

Pr
(
A⋆

j,ν

)
=

∫ ∞

0

(
1− Fδt,!j,!ν (βkjz)

)
fδt,j,ν (z) dz. (7)

Substituting the PDF from (2) and CDF from (4) into (7) and
performing some mathematical manipulations yields (6).

(6) shows that as hjν increases, the lower limit of the
integral increases and as a result the probability that typical
UE is served by a tier-j DBS at height hjν , Pr

(
A⋆

j,ν

)
,

reduces. Similarly, increasing βkj increases the argument of
the exponential function and as a result Pr

(
A⋆

j,ν

)
reduces.

Proposition 4. The typical UE to serving DBS distance is
denoted as δ⋆t,j,ν =

√
r2t + h2

jν . The CDF of δ⋆t,j,ν is given as

Fδ⋆t,j,ν

(
z|A⋆

j,ν

)
= 1− 2πλjν

Pr
(
A⋆

j,ν

) ∫ ∞

y>hjν

ye−π
∑

{k,m} λmk(β2
kjy

2−h2
mk)u(β

2
kjy

2−h2
mk)dy.

(8)

The PDF is obtained by taking the derivative of CDF in (8)
yielding

fδ⋆t,j,ν
(
z|A⋆

j,ν

)
=

2πλjνz

Pr
(
A⋆

j,ν

)e−π
∑

{k,m} λmk(β2
kjz

2−h2
mk)u(β

2
kjz

2−h2
mk)u (z − hjν) .

(9)

Proof: CDF of δ⋆t,j,ν is defined as

Fδ⋆t,j,ν

(
z|A⋆

j,ν

)
= 1− Pr (δt,j,ν > z|δt,j,ν < βjkδt,!j,!ν) .

(10)

Representing the conditional probability in terms of joint
probability yields

Fδ⋆t,j,ν

(
z|A⋆

j,ν

)
= 1− Pr (δt,j,ν > z ∩ δt,j,ν < βjkδt,!j,!ν)

Pr (δt,j,ν < βjkδt,!j,!ν)
.

(11)

Representing the probability in terms of an integral yields

Fδ⋆t,j,ν

(
z|A⋆

j,ν

)
= 1− 1

Pr
(
A⋆

j,ν

) ∫ ∞

y>z

(
1− Fδt,!j,!ν (βkjy)

)
fδt,j,ν (y) dy.

(12)

Substituting the PDF from (2) and CDF from (4) into (12)
and performing some mathematical manipulations yields (8).

IV. PROBABILITY OF HANDOVER

We define the handoff event when the UE changes DBS
association after moving closer to another DBS (belonging
to the same tier or a different tier) having a better biased
averaged received power. The probability of handover, Pr(H),
can be calculated using probability of the complementary
event that the handover does not occur [6]. Handover will not
occur for time duration, t ∈ [0, T ], if the mobile UE remains
connected to the same DBS for the whole duration.

Equivalently, it can be stated that a handover will not occur
if there is no other DBS within a surrounding circular region
of radius equal to the radial distance between UE and DBS.
At t = 0, the typical UE at origin associates with the DBS
of height hjν at r0∠θ0. This association implies that there is
no other DBS closer than it i.e. Φj (B (x0, r0)) = 0, where
Φj (A) denotes the number of points of the PPP Φj , in a
region A and B (x, r) denotes a 2D ball in the xy-plane with
radius r centered at x.

As the UE moves along the positive x-axis with velocity v
for a duration t, again handover will not occur if there is no
other DBS closer than the associated DBS i.e. for arbitrary
t, the ball B ((vt, 0), rt) should not contain any DBS. If
this holds for all positions of the UE, i.e. the void region
A = ∪t∈[0,T ]B ((vt, 0), rt) \B (x0, r0) has no other DBS, then
there will be no handover. Here, ∪t denotes the union operator
over time t and S1\S2 represents the set of elements of S1

which are not elements of S2. Region B(x0, r0) has been
excluded because initial association to a DBS at time t = 0
inherently implies Φj (B (x0, r0)) = 0.

Let NH represent the event that there is no handover,
then probability of this event is given as Pr (NH) =
Pr (Φj (A) = 0). The probability of this no handover event
can be calculated using void probability of a PPP as
Pr (NH) = exp (−Λj |A|), where |A| denotes the area of
region A and Λj denotes the intensity of the PPP Φj .

Given that at time t, the UE is at location xt = (vt, 0) and is
connected to a DBS of tier-j and height hjν , handover to any
k-th tier DBS of height hkm, will not occur if there is no such
DBS within a region B

(
xt,

√
β2
kj

(
r2t + h2

jν

)
− h2

km

)
=



B
(
xt,

√
β2
kjδ

⋆
t,j,ν

2 − h2
km

)
. Let Rβ

(
δ⋆t,j,ν , hkm

)
=√

β2
kjδ

⋆
t,j,ν

2 − h2
km, then depending upon the height

hkm of the neighboring DBS, following observations can be
made for the case when βkj = 1,

1) R1

(
δ⋆t,j,ν , hkm

)
must be greater than 0 which requires

that h2
km < δ⋆t,j,ν = r2t + h2

jν , i.e. a DBS can be
considered for handover only if its height hkm < δ⋆t,j,ν ,
otherwise Pr (NH) = 1.

2) If hjν < hkm < δ⋆t,j,ν , then R1

(
δ⋆t,j,ν , hkm

)
< rt,

implying
∣∣B (

xt, R1

(
δ⋆t,j,ν , hkm

))∣∣ < |B (xt, rt)|, i.e. if
the neighboring DBS height is higher, the void region
where there should be no DBS of height hkm, shrinks.

3) If hkm ≤ hjν < δ⋆t,j,ν , then R1

(
δ⋆t,j,ν , hkm

)
≥ rt,

implying
∣∣B (

xt, R1

(
δ⋆t,j,ν , hkm

))∣∣ ≥ |B (xt, rt)| i.e. if
the neighboring DBS height is lower, the void region
expands.

When the DBSs are at the same height i.e. hjν =
hkm, then B

(
x0, R1

(
δ⋆0,j,ν , hkm

))
= B (x0, r0) and

B
(
x0, R1

(
δ⋆T,j,ν , hkm

))
= B (xT , rT ). In this case, these

regions will always intersect and area of the region can be
calculated by the union of B (x0, r0) and B (xT , rT ) [13].
However, this is not necessary when DBSs are at differ-
ent heights i.e. hjν ̸= hkm or when βkj ̸= 1. In this
case, B

(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
and B

(
xT , Rβ

(
δ⋆T,j,ν , hkm

))
expand or contract and thus, may not intersect. So for calcu-
lation of Pr (NH), similar to [13], we have different cases.

Case 1: βkj ≥ 1, No boundary intersection and
Rβ

(
δ⋆0,j,ν , hkm

)
> Rβ

(
δ⋆T,j,ν , hkm

)
+ vT : In this case,

B
(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
⊃ B

(
xT , Rβ

(
δ⋆T,j,ν , hkm

))
and ∪t∈[0,T ]B (xt, rt) = B

(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
.

Thus, A1

(
v, T, δ⋆0,j,ν , θ0, βkj , hjν , hkm

)
=

B
(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
\B

(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
= 0.

Case 2: βkj ≥ 1, No boundary intersection and
Rβ

(
δ⋆T,j,ν , hkm

)
> Rβ

(
δ⋆0,j,ν , hkm

)
+ vT : In this case,

B
(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
⊂ B

(
xT , Rβ

(
δ⋆T,j,ν , hkm

))
and thus, A2

(
v, T, δ⋆0,j,ν , θ0, βkj , hjν , hkm

)
=

B
(
xT , Rβ

(
δ⋆T,j,ν , hkm

))
\B

(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
.

Case 3: βkj ≥ 1 and Boundaries intersects: In
this case,

∣∣Rβ

(
δ⋆T,j,ν , hkm

)
−Rβ

(
δ⋆0,j,ν , hkm

)∣∣ < vT

and
∣∣Rβ

(
δ⋆T,j,ν , hkm

)
+Rβ

(
δ⋆0,j,ν , hkm

)∣∣ > vT .
B
(
x0, R

(
δ⋆0,j,ν , hkm

))
and B

(
xT , R

(
δ⋆T,j,ν , hkm

))
intersect. The void region is the crescent given as
C = B

(
xT , Rβ

(
δ⋆T,j,ν , hkm

))
\ B

(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
.

Area of C is calculated using formula for area of the lune,
and is given in (13), where r0 =

√
δ⋆0,j,ν

2 − h2
jν [14].

Case 4: βkj ≥ 1, No Intersection and Not Subset: In this
case, B

(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
and B

(
xT , Rβ

(
δ⋆T,j,ν , hkm

))
are disjoint and not a subset of each other
and thus, A4

(
v, T, δ⋆0,j,ν , θ0, βkj , hjν , hkm

)
=(

B
(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
∪ B

(
xT , Rβ

(
δ⋆T,j,ν , hkm

)))
\

B
(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
= B

(
xT , Rβ

(
δ⋆T,j,ν , hkm

))
.

Case 5: βkj < 1: When βkj < 1, the radius of
circular void region shrinks and in this case, for each
position of the UE, we get a circular void region
with radius, Rβ

(
δ⋆t,j,ν , hkm

)
=

√
β2
kjδ

⋆
t,j,ν

2 − h2
km =

√
Rβ

(
δ⋆0,j,ν , hkm

)2
+ β2

kjv
2t2 − 2β2

kjr0vt cos (θ0). Different
from [13] where an approximation was adopted for
calculating the area for this case, we find exact area
expression using the theory of envelop of family of curves
[15]. In this case, A5

(
v, T, δ⋆0,j,ν , θ0, βkj , hjν , hkm

)
=

∪t∈[0,T ]B
(
(vt, 0), Rβ

(
δ⋆t,j,ν , hkm

))
\B

(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
is a region which is a union of family of circles with varying
centers and radius. The center is determined by UE position
and the radius is given as Rβ

(
δ⋆t,j,ν , hkm

)
. Integrating the

envelop of this family of circles will yield the required void
area. The equation of envelop of this family of circles is

y=

√√√√ (x−β2
kj

r0 cos(θ0))
2

(1−β2
kj)

−x2+R2
β(δ⋆0,j,ν ,hkm). (14)

Above equation is valid for a region a < x < b, where
a and b are the x-coordinate of intersection points of the
adjacent circular void regions about 0 and vT , respec-
tively. Using circular geometry, We obtain these intersection
points as a = β2

kjr0 cos (θ0) and b = β2
kjr0 cos (θ0) +

vT
(
1− β2

kj

)
, respectively. Before a, the void region is

the ball B
(
x0, Rβ

(
δ⋆0,j,ν , hkm

))
and beyond b, the void

region is the ball B
(
xT , Rβ

(
δ⋆T,j,ν , hkm

))
. Using (14),

A5

(
v, T, δ⋆0,j,ν , θ0, βkj , hjν , hkm

)
is given in (15). A factor

of 2 is multiplied due to symmetry of the void region.

Proposition 5. The void area expression for a K-tier aerial
network where each tier has DBSs at M possible altitudes
and a variable CRE bias factor, Bk, is given in (16).

Proof: The details are given in the aforementioned Cases 1-5.
The limits for each case are obtained after some mathematical
manipulation. Due to space limitation, Case 5 is discussed
briefly and the detailed proof is omitted.

Proposition 6. The probability of handover of a UE moving
with velocity v for a time duration of T in a K-tier aerial
network where each tier has DBSs at M possible altitudes and
a variable CRE bias factor, Bk, is given in (19), where θ0 is
a uniform random variable in the range [0, π], fδ⋆0,j,ν

(
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)
is given in (9) and Pr
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is given in (6).

Proof:
Given that at time t = 0, the UE is connected to a tier-j

DBS at height hjν and moves from x0 to xT = (vT, 0), the
conditional probability that handoff will not occur is given as
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The unconditional probability of no handover is obtained by
averaging (17) over the distribution of δ⋆0,j,ν , θ0 and A⋆

j,ν as
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Substituting Pr
(
NH|A⋆

j,ν , δ, θ
)

into (18), and using the fact
that Pr (H) = 1− Pr (NH) yields (19).

V. NUMERICAL RESULTS AND DISCUSSION

Numerical simulations were carried out in Python to ana-
lyze the performance of the K-tier aerial network with M -
heights and to corroborate the derived analytical expressions.
We simulated a 2-tier and a 3-tier network with M heights
over an area of 1 square kilometer (km2). The following
parameters were set in the simulations unless stated otherwise:
Pk = 30dBm, α = 3, T = 10s, Λ1 = Λ2 = 60 DBSs per
km2, K = 2, M = 1. The number of Monte-Carlo simulation
runs for each set of parameter values was 25000.

The probability of handover with varying velocity for a two-
tier network is shown in Fig. 2. An obvious trend observed
is that the handover probability increases with velocity. In
Fig. 2(L), tier-1 and tier-2 DBSs are assumed be at the same
altitude i.e., h11 = h21 = 100m and the CRE factor is
varied. It can be noted that the probability of handover is
higher when B1 = B2 = 1. However, when the network
is biased towards any one tier, i.e. (B1, B2) = (3, 1) or
(B1, B2) = (1, 3), the probability of handover reduces. On
the contrary, in Fig. 2(R), tier-1 and tier-2 have the same
CRE factor i.e. B1 = B2 = 1 and the altitude of tiers is
varied in the simulation i.e., (h11, h21) = (100m, 100m),
(h11, h21) = (100m, 140m) or (h11, h21) = (140m, 100m).
Again in this case, the probability of handover is higher when
(h11, h21) = (100m, 100m). When altitude of any tier is
increased, the probability of handover is reduced.

The reason for these trends is that decreasing CRE factor or
increasing height of a tier, lowers the probability of association
with that tier. As a result, the cell boundaries are dominated
by the other tier which has the higher association probability
due to higher CRE factor or lower height. This reduces the

TABLE I: Simulation Parameters for Fig. 2 (3-Tier with 4 heights).

Algorithm (hk1, λk1) (hk2, λk2) (hk3, λk3) (hk4, λk4)

Tier-1 (100, 40) (100, 30) (100, 20) (100, 40)
Tier-2 (80, 20) (90, 20) (95, 20) (100, 30)
Tier-3 (85, 20) (100, 30) (105, 20) (100, 30)

effective density of DBSs compared to the equal CRE and
equal height scenario, in which the effective DBS density
is the sum of both tiers i.e., Λ1 + Λ2. This lower effective
density of the DBSs, dominates the cell boundaries, resulting
in an increase in Voronoi cell size and hence a lower handover
probability.

Furthermore, from Fig. 2 it can be observed that when a UE
is connected to the tier with lower CRE factor, the probability
of handover is higher because it is encouraged to offload to
the other tier with the higher CRE factor. Similarly, the UE is
encouraged to join the tier at a lower height and therefore, the
probability of handover is higher when the UE is associated
with the tier at higher altitude.

The handover probability for a 3-tier aerial network with
M = 4 is plotted in Fig. 2(R). The height and corresponding
densities of the DBSs are given in Table I. Again in this case
the probability of handover increases with velocity. Moreover,
the probability of handover is higher because a higher overall
density leads to smaller cell sizes. The simulation results also
corroborate the analytical results as shown in Fig. 2.

In Fig. 3, the probability of handover and probability of
coverage (in terms of received signal strength (RSS)) for
a two-tier network is plotted with varying the CRE factor.
A low value of B2

B1
indicates that the UEs are forced to

connect with tier-1 whereas a high value indicates that UEs are
forced to connect with tier-2. It can be observed that, a high
value of CRE factor reduces the probability of handover. The
reasoning for this, as discussed above, is that the effective
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Fig. 3: Probability of handover and coverage for a two-tier
network with varying the CRE and tier heights, where T = 5s
and γ = 8dB.

cell size increases because overall effective density of the
DBSs is reduced. Alternatively, it can be reasoned that, when
B2

B1
is high, handover only occurs within tier-2 (intra-tier

handover). Similarly, when B2

B1
is low, handover occurs only

within tier-1 DBSs and thus, the handover probability is
lower. For intermediate values of B2

B1
, DBSs of both tiers are

active and inter-tier handover also occurs and the Voronoi cell
size reduces and UE experience more number of handovers.
Similar to Fig. 2, it can be noted that increasing the DBS
altitude, reduces the handover probability. Again, in this case,
the analytical results match the simulation results quite well.

It is desirable to lower the handover probability, as it
reduces signaling overhead and load on the network. Above
results indicate that either biasing towards another tier or
increasing the height of a tier can reduce the probability of
handover. However, this does not portray the complete picture.
Reducing the DBS density impacts the RSS and reduces
the probability of coverage. This tradeoff is shown clearly
in Fig. 3. Therefore, when optimizing network parameters,
handover probability must be optimized along with other
affected parameters such as coverage probability and the
network must be configured at a sweet spot where there is
good coverage probability and a lower handover probability.

VI. CONCLUSION

In this work, the probability of handover of a K-tier aerial
network is analyzed. The DBSs in each tier can hover at
different altitudes and each tier has a different CRE factor.
Simulation results, corroborating the analytical analysis, show
that increasing altitude or the CRE factor reduces the handover
probability. However, this comes at a cost of reduced coverage
probability. Thus, when setting parameters to reduce handover
probability, other KPIs such as coverage and RSRP must also
be taken into account and be optimized jointly.
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