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Abstract—The trend towards denser base station deployment
and multi-band operations in emerging cellular networks has
made mobility management and handover (HO) optimization a
formidable challenge. The challenge is further aggravated by
the scarcity of practical multi-objective mobility management
solutions optimizing both intra and inter frequency HO. This
paper presents a holistic multi-objective mobility management
solution for both intra and inter frequency HO employing
multiple parameters of standardized HO events A2, A3, and
A5. We formulate a multi-objective optimization problem to
determine the optimal parameter settings that jointly optimize
four key performance indicators: number of HO failures, HO
latency, signaling overhead and number of radio link failures.
We leverage soft actor-critic reinforcement learning (RL) to solve
the multi-objective problem. To mitigate the risk of performance
deterioration resulting from direct interactions between live
network and RL-agent during training, this paper proposes a
mobility management framework that develops and employs a
digital twin (DT) as the training environment. To develop a cellu-
lar network DT for mobility management and HO optimization,
we present a tri-pronged approach including realistic network
deployment, realistic user mobility and 3GPP HO events. Results
show that the proposed DT-trained RL solution for the multi-
objective optimization can converge 7x faster than the brute force
method with negligible loss in the value of the objective function.
An analysis of the individual KPI values reveal a strong trade-off
between HO signaling overhead and radio link failures.

I. INTRODUCTION

Dense base station (BS) deployment and operations on
motley of frequency bands have emerged as some of the most
prominent solutions to meet the exploding demands for higher
data rates and reliability, lower latency, support for a variety
of vertical use cases, and highly dense connected devices.
The shift towards denser and multi-band BS deployment is
evident from the higher number of operating bands including
mmWave bands in 5G compared to 4G networks. This trend
is expected to continue for 6G with the utilization of THz
band [1]. However, as network deployment grows more dense
and operating bands expand, mobility management becomes
increasingly challenging due to the associated increase in
handovers and signaling overhead.

Current industry practice for HO optimization utilizes ei-
ther vendor-defined gold standard based configuration and
optimization parameter (COP) settings or manual knowledge-
based COP settings. However, the suitability of these meth-
ods is undermined by rapidly varying network conditions,

disparate user equipment (UE) mobility and requirements.
To introduce some degree of autonomy in HO parameter
setting, 3GPP has standardized mobility robustness optimiza-
tion (MRO) under self organising networks. MRO solutions
typically optimize a limited number of HO-related COPs
leveraging historical data. However, the reactive nature of the
majority of MRO solutions and the complex inter-connection
between COPs render them inadequate for emerging cellular
networks, which require a proactive and fully automated
mobility management solution.

Recent application of machine learning (ML) algorithms for
cellular networks have demonstrated their ability to develop
proactive and automated solutions [2]. The capability of these
ML models to map the impact of varying HO COPs on
key performance indicators (KPI) that is not attainable with
domain knowledge or even SON solutions, positions them
as viable proactive mobility management enablers. Reinforce-
ment learning is one promising approach under the umbrella
of ML-based mobility management solutions. During the
training phase, the RL agent explores the solution space by
setting different COP values as actions on a cellular network
environment in order to evaluate the reward function and
learn the behavior of a cellular network with different COP
combinations. While a well-trained RL agent can proactively
identify COP settings that maximize the KPIs, the train-
ing phase requires an iterative, hit-or-miss approach. This
idiosyncrasy of RL continues to be an impediment to its
practicality, since the iterative hit-or-miss method when done
in a live network raises the possibility of causing disruptions.
In addition, measuring the impact of particular COP settings
on a live network requires either drive tests or the exploitation
of minimization of drive test (MDT) data. However, drive
tests and MDT-based network measurements are both time-
intensive and can significantly increase the training duration of
RL. These challenges necessitate an innovative approach that
can expand the applicability of RL in mobility management.

A. Related Work

Recent literature on mobility management focuses primar-
ily on two broad approaches. The first approach involves
proposing novel HO approaches [3]–[5] while the second
involves optimizing intra and inter HO related parameters of



existing 3GPP procedures [6]–[9]. Authors in [3] developed
a novel two-stage handover procedure with first stage for UE
clustering and second stage for learning the optimal handover
controller using RL. Meanwhile, authors in [4] proposed a
new centralized RL-based HO procedure that evaluates the
UE’s measurement report and maximizes the throughput gain
opportunistically. In [5], the authors utilized RL to learn the
best backup BS for HO and reduce the number of handovers
without impacting the rate and reliability. While these studies
show promising outcomes, the suggested solutions necessitate
modification in existing handover standards, hindering a swift
industrial uptake.

While previous studies proposed new HO methods, authors
in [6] presented an RL-based dynamic HO optimization to
simultaneously minimize HO failures (HOF) and ping pongs
using time to trigger (TTT) and hysteresis of event A3. In
contrast to tuning A3 parameters, authors in [7] proposed
XGBoost-assisted genetic algorithm for event A5 based inter-
frequency HO to optimize average reference signal received
power (RSRP), average signal to interference and noise ratio
(SINR) and HO success rate. Meanwhile, a method to predict
inter-frequency HO failures and a proactive power-tuning al-
gorithm to enhance HO success rate is proposed in [8]. Rather
than optimizing either intra or inter frequency HO in silos, the
authors in [9] proposed ML-aided simulated annealing solution
for the joint optimization of intra and inter frequency HO.

The aforementioned studies have focused on optimizing
either intra-frequency HO using event A3 or inter-frequency
HO using event A5. However, optimization of event A3
and A5 HO parameters separately often leads to sub-optimal
settings, as noted in [9]. Recognizing the interconnected
nature of these 3GPP standardized HO events, we take a
step further by incorporating event A2 alongside events A3
and A5. This approach enables holistic mobility management,
simultaneously optimizing both intra and inter-frequency HOs.
In contrast to prior research that typically optimizes a limited
number of KPIs, we formulate a multi-objective problem
aimed at minimizing the number of HOF, HO latency, sig-
naling overhead, and number of radio link failures (RLF). To
address the multi-objective problem, we propose a risk averse
mobility management framework that utilizes RL to determine
the optimal values of COPs that minimize the four KPIs. Since
RL learns by repetitive process, training the RL agent directly
on a live network can lead to potential network impediments,
which inhibits the practical application of RL-based solutions.
To overcome this limitation, we leverage digital twin of the
cellular network as the training environment of the RL agent
in our framework, rather than the actual network.

B. Contributions
The main contributions of this paper are given below:
1) We present a mobility management solution that holisti-

cally optimizes both intra and inter frequency HO. The
proposed solution leverages five mobility COPs namely
A2 threshold, A3 TTT, A3 offset, A5 TTT and A5 delta
to optimize the KPIs. To design the new feature A5

delta, we employ domain knowledge and exploit the
relationship between the parameters of event A5 and
event A2. To the best of authors’ knowledge, this is the
first study to jointly optimize events A2, A3, and A5.

2) We formulate and solve a multi-objective optimization
problem that jointly minimizes number of HOF, HO
latency, signaling overhead and number of RLF as a
function of the five COPs. To solve the multi-objective
problem, we propose a risk averse mobility management
framework that utilizes soft actor-critic RL algorithm.

3) To mitigate the risk of potential impairment when train-
ing RL on a live network, the risk averse framework
leverages a DT of the cellular network to train the RL
agent instead of training on the live network. We also
highlight a three step road map to construct a DT for
creating, testing, and optimizing mobility management
solutions. Results indicate that the proposed DT-trained
RL solution can converge 7 times faster than the brute
force approach, making it suitable for rapidly changing
network conditions and UE dynamics.

The rest of the paper is organized as follows: Section II
presents the system model and problem formulation. In Section
III, we presents the DT-aided risk averse mobility management
framework, tri-pronged approach to create digital twin for
developing mobility solutions and the performance evaluation
of the RL algorithm. Finally, Section IV concludes the paper.

II. SYSTEM MODEL

In this section, we present the standardized 3GPP HO
events, define the four KPIs, the justification for concurrent
optimization of events A2, A3, and A5, and the need for multi-
objective optimization. This section also includes the multi-
objective optimization problem formulation.

A. Standardized 3GPP Handover Events

The following discussion describes the 3GPP standardized
HO events A3, A5 and A2 for 5G NR.

1) Event A3: Event A3-based HO starts when the RSRP of
a UE from target BS exceeds the RSRP from serving BS by
an offset for a certain time called time-to-trigger (A3TTT ).

ηtu −A3hyst > ηsu +A3off (1)

where ηtu and ηsu are the RSRP of the UE u from target BS
t and serving BS s, respectively, A3off is the A3 offset and
A3hyst represents A3 hysteresis.

2) Event A5: Event A5-based HO triggers when RSRP
from serving BS remains below a threshold called A5-
threshold1, and the RSRP from target BS remains above an-
other threshold called A5-threshold2 for a duration of A5TTT .

ηsu +A5hyst < A5th1

ηtu −A5hyst > A5th2
(2)

where A5hyst, A5th1 and A5th2 represent the hysteresis,
threshold1 and threshold2, respectively for event A5.



(a) Normalized average HO latency (b) Normalized total signaling overhead

Fig. 1. The variation in HO latency and signaling overhead with change in A2, A3 and A5 parameters. The red square in each row highlights the optimal
KPI value for fixed A3 settings.

3) Event A2: : Event A2 is triggered when the RSRP of
a UE from serving BS remains below a threshold for the
duration set by A2TTT .

ηsu +A2hyst < A2th (3)

where A2hyst and A2th are the event A2 hysteresis and
threshold, respectively.

We employ event A3 and event A5 to trigger intra and inter
frequency HO, respectively in accordance with the practice
of major network operators [7]. Before activating an inter-
frequency HO, a UE must measure the signal conditions on
frequency bands other than the current operating frequency
band through a 3GPP-standardized process of measurement
gap (MG). We utilize event A2 to activate MG.

B. Key Performance Indicators
1) Handover Failure: The number of HOF provides a direct

measurement of the HO performance. Low number of HOF
indicates that the transition of UEs from one cell to another is
smooth, resulting in a satisfactory quality of experience (QoE).
The total number of HOF, denoted by H , is the sum of both
intra and inter frequency HOF.

2) Handover Latency: HO latency represents the time a UE
spends in the HO process and larger HO latency can negatively
impact UE QoE. Each HO attempt will either be a success
or a failure. In the event of HO success, the HO latency is
measured as the time between the HO start point and the point
of successful connection with the target BS. In the event that
HO fails, the UE reattempts HO after a predetermined amount
of time, as specified by the report interval parameter. Multiple
HO failures can exacerbate the UE SINR, resulting in RLF.
Hence, HO latency in the event of HO failure is the time
between the HO start point and either HO success in one of
the repeated attempts or UE RLF, whichever occurs first. In
this paper, we optimize the average HO latency L and define
it as follows:

L =

∑
∀s∈Hs

Ls +
∑

∀f∈Hf

Lf

|HA|
(4)

where Ls and Lf represent the latency for each HO success
and HO failure, respectively. The sets Hs and Hf contain
all the HO successes and failures, respectively and set HA

contains all the handovers in the network.

3) Radio Link Failure: The number of RLFs in a network
can be used to measure the instances of service disruption.
Improper HO parameter settings can lead to a higher number
of RLF in the network, severely impacting the UE experi-
ence and leading to churn. Several timers and indicators are
involved in declaring RLF. Specifically, we consider N310,
T310 and N311 as the parameters for declaring an RLF. The
total number of RLF in the network is denoted by R.

4) Handover Signaling: One consequence of HO is the
added signaling overhead on the network. Although optimizing
number of HOF, HO latency, and the number of RLF will
enhance UE QoE, these factors do not directly represent the
burden caused by HO to the network. In order to assess
the tradeoff between UE QoE and signaling overhead as a
result of HO, we incorporate signaling overhead as a KPI. We
have modeled the overhead of several over-the-air signaling
messages between the UE and source or target BS during
the HO process using X2 interface [10]. We define total
HO signaling overhead S as the additional signaling bytes
transmitted over-the-air during the HO process.

C. Impact of Handover COPs on KPIs
Fig. 1 highlights the impact of handover COPs on HO

latency and HO signaling using data from the digital twin setup
described in sub-section III-A. Fig. 1(a) shows that the optimal
value of HO latency in each row, denoted by red square, shifts
as A3 settings are adjusted. This suggests that the optimal val-
ues of A2 and A5 COPs become sub-optimal if A3 COP values
are altered. This trend is also apparent in Fig. 1(b) for total
signaling overhead, with optimal settings shifting across each
row. This observation demonstrates that optimization of A2,
A3, and A5 parameters in silos, as observed in the majority
of academic literature and industrial norms, may result in sub-
optimal KPI values. Moreover, simultaneous analysis of Fig.
1(a) and Fig. 1(b) reveals that different sets of COPs optimize
HO latency and signaling overhead. This observation implies
that there is a trade-off between optimizing these KPIs, which
necessitates a multi-objective KPI optimization.

D. Problem Formulation
We use the parameters from HO events A3, event A5 and

event A2 to jointly optimize H , L, R, and S. We leverage
domain knowledge to combine A5th1 and A5th2 into a new
parameter A5∆ and define it as A5∆ = A5th1 − A5th2.



min
A3TTT ,A3off ,A5TTT ,A5∆,A2th

√
α(H −Ht)2 + β(L− Lt)2 + γ(S − St)2 + (1− α− β − γ)(R−Rt)2;

subject to A5TTT , A3TTT ∈ T
Omin ≤ A3off ≤ Omax

Tmin ≤ A2th1 ≤ Tmax

A5th1 = A2th
A5th2 = A5th1 +A5∆
α+ β + γ ≤ 1

(5)

Fig. 2. The proposed risk averse mobility management framework with digital twin-based environment of reinforcement learning.

Moreover, we are aware that the value of A2th is generally
equal to or higher than A5th1. This happens because a UE
cannot measure other frequency bands until event A2 is
initiated, and hence, inter-frequency HO utilizing event A5
cannot be triggered prior to triggering event A2. We leverage
this fact to set A5th1 = A2th and A5th2 = A5th1+A5∆. This
intelligent domain knowledge aware settings of parameters
allows the merging of three COPs (A5th1, A5th2 and A2th)
into two COPs (A5∆ and A2th), hence reducing the search
space of the optimization problem.

Eq. (5) shows the multi-objective optimization problem
formulation for joint minimization of H , L, R and S as a
function of A3 parameters (A3TTT and A3off ), A2 parameter
A2th, A5 parameter (A5TTT ) and A5∆ defined earlier. We
have formulated the objective as a target minimization problem
to minimize the difference of each KPI with a target KPI
value defined by the operator. The parameters α, β, γ and
(1− α− β − γ) are the operator-defined weights of H , L, S
and R, respectively, and can be leveraged to set the importance
of each KPI. Meanwhile, Ht, Lt, St and Rt are the normalized
target values for H , L, S and R, respectively and the overline
on KPI represents the normalized value of that KPI. The
normalization eliminates the bias towards larger KPI values
and ensures that the KPI weights control the importance of
each KPI. The first three constraints confine the values of
the optimization variables to the 3GPP-defined ranges. The
set T contains the range of values of A3TTT and A5TTT ,
Omin and Omax are the minimum and maximum values of
A3off , respectively, while Tmin and Tmax are the minimum
and maximum values of A2th, respectively. The fourth and
fifth constraints characterize the intelligent domain-knowledge
aware relationship between A5th1, A5th2, A2th and newly
proposed A5∆, respectively. Finally, the last constraint ensures
that the sum of the four weights equals 1.

III. DIGITAL TWIN-AIDED RISK AVERSE MOBILITY
MANAGEMENT FRAMEWORK

Training an RL agent directly on a live cellular network
carries the risk of substantial KPI degradation and hence, the
cellular network operators are reluctant to adopt RL-based
solutions. The proposed framework in Fig. 2 aims to address
this challenge by first creating a digital twin representation
of the cellular network. During training, the RL model will
utilize a DT as the environment instead of the actual cellular
network. Only after the RL agent has been trained on the DT,
it will be deployed in the actual cellular network. The network
deployment parameters, geographical conditions, UE parame-
ters, as well as the standardized cellular network processes can
be utilized to create a DT of the cellular network as presented
in sub-section III-A. There can be three major triggers for
the optimization process: KPI-based, event-based, and time-
based triggers as highlighted in 2. The multi-objective KPI
optimization process commences upon the occurrence of any
of these three triggers.

A. Digital Twin Creation for Mobility Management

To realistically mimic the conditions of a cellular network
in a DT, we focus on accurately modeling three crucial aspects
of cellular networks, which include network deployment, UE
mobility patterns, and 3GPP-compliant HO events. Although
additional considerations are necessary to develop a complete
DT of cellular network, the aforementioned three steps can
serve as a good starting point, particularly for mobility man-
agement solutions.

1) Network Deployment: The first step entails acquiring the
network deployment parameters for the geographical area of
interest. These deployment parameters are readily accessible
to network providers and include, but are not limited to, BS
location, BS type (macro or small), sectors of each BS, BS



TABLE I
NETWORK DEPLOYMENT PARAMETERS

Parameter Description Value
Simulation Area 938m×697m
Number of Sites Macro Cells (MC): 2; Small Cells (SC): 7
Cell Sectors MC: Tri-sectored; SC: Omni-directional
Transmission Frequency MC: 870 MHz; SC: 3300 MHz
Transmission Bandwidth MC: 10 MHz; SC: 20 MHz

Beamforming Model MC: 64T64R 90◦ 24dBi Low & Mid-bands;
SC: 32T32R 360◦ 17 dBi Mid-band

Pathloss Model Aster Propagation (Ray-tracing)
Geographic Information Ground and building heights, land use maps
Shadowing Clutter-dependent shadowing
Total Active Users 60

height, antenna patterns, tilts, azimuths, MIMO configurations,
transmit power, operating frequency bands, etc. Once these
characteristics are known for a certain region, RSRP maps can
be generated using the 3GPP-standardized MDT report data
from that region [11]. In addition, the bandwidth of different
frequency bands and the scheduling algorithms employed by
operators can be incorporated into the DT.

As these deployment parameters and MDT RSRP maps are
not publicly available, we use a popular tool among network
operators for radio access network planning, and optimization
[12]. This tool employs an advanced ray-tracing approach to
accurately model signal propagation. Using this tool, we create
a 5G network comprised of macro and small cells to record
MDT-based RSRP traces in a geographic area in Manhattan,
New York, USA. A log-normal distribution is used to model
the shadowing with a standard deviation that varies depending
on the type of clutter. We utilize real 3D antenna patterns
for both type of cells. Finally, the site deployment (i.e., base
station location, tilt, and azimuth) is optimized using the tool’s
automatic cell planning tool (ACP) feature combined with our
domain expertise. Table I presents the simulation parameters.

2) UE Mobility Patterns: Realistic UE mobility patterns
can be generated using microscopic traffic simulators such
as SUMO [13]. In this paper, we leverage SUMO to deploy
mobile UEs on the roads in the geographic region of network
deployment. Unlike conventional mobility models that are typ-
ically used to develop mobility management solutions, SUMO
assures that the generated UE mobility patterns correspond to
the mobility trend of the UEs in a real network.

3) 3GPP Compliant Handover Events and Procedures:
Creating a digital twin for mobility management necessitates
a thorough implementation of the 3GPP-defined HO events
and parameters discussed in sub-section II-A as well as HO
signaling messages. In addition, the 3GPP defined counters
and timers for RLF as highlighted in sub-section II-B are
vital to gauge the instances of service interruption due to HO
settings. To fulfill these requirements, we exploit a 3GPP state-
of-the-art system level simulator named SyntheticNET [14],
which has been calibrated against real network measurements
to ensure authenticity.

B. RL-based Optimization

Once the digital twin is established, it can be used to
securely train the RL agent for developing the mobility

TABLE II
ACTIONS PERFORMED BY THE REINFORCEMENT LEARNING AGENT

COPs Values
A5TTT [64, 128, 192, 256, 384, 512, 640] ms
A2th [-75 to -115] dBm

A5∆ (A5th1 −A5th2) [-20 to 20] dBm
A3TTT [64, 128, 192, 256, 384, 512, 640] ms
A3off [0 to 10] dB

Fig. 3. Convergence of objective function with epochs of soft actor-critic RL
using different KPI weights of eq. (5).

management solution. To design the mobility management
solution, we are utilizing state-of-the-art soft actor-critic RL
algorithm [15] in this study. The choice of the soft-actor critic
RL is determined by its capacity to efficiently explore a vast
action space with a high sampling efficiency. We define the
state space, action space, and reward function for the soft
actor-critic RL before comparing the performance with brute-
force optimization.

State Space: The parameters of events A2, A3, and A5
influence RSRP, SINR, and throughput of the network [7]. Due
to the impact of these optimization parameters on the network,
they are prime candidates for characterizing the state of the
DT environment. The state vector is represented as follows:

St = [ηt, ϕt, ζt] (6)

where ηt, ϕt and ζt are the average values of RSRP, SINR
and throughput, respectively.

Action Space: The RL agent actions are specified to
select the values of optimization variables used in eq. (5)
with pre-defined ranges for each COP, such that: at =
[A3TTT , A3off , A5TTT , A5∆, A2th] Table II lists the allow-
able actions for each of the five COPs.

Reward Function: The scaled value of the objective func-
tion defined in eq. 5 is used as the reward for the RL model.

Fig. 3 depicts a performance comparison between the soft
actor-critic approach and the brute force method with different
KPI weights. The original raw values of the objective function
returned by the RL algorithm in each epoch are shown for the
scenario with equal weight of all KPIs. To enhance readability,
we also incorporate a smoothed line to reflect the objective



Fig. 4. Variation in individual KPIs with different KPI weights of eq. (5).

function value averaged over 50 epochs. For a scenario where
KPIs have equal weights (α = β = γ = 0.25), RL converges in
less than 2500 epochs, whereas brute force requires 21,000 it-
erations. We observe a similar pattern when a greater emphasis
is placed on decreasing the number of HOF (α = 0.7, β = γ
= 0.1), HO latency (α = γ = 0.1, β = 0.7), signaling overhead
(α = β = 0.1, γ = 0.7) and the number of RLF (α = β = γ
= 0.1) with convergence times between 2500 to 3000 epochs.
However, the faster convergence is accompanied by a modest
reduction in the objective function value. This demonstrates
that RL has 7 times faster convergence than the brute force
while returning near-optimal values.

Although Fig. 3 provides insights into the comparison with
brute force, a deeper analysis can demonstrate the influence of
KPI weights on the individual value of KPIs. For an in-depth
examination, we illustrate the normalized value of four KPIs
with varying KPI weights in Fig. 4. A relatively low value
for the number of HOF and HO latency can be observed with
changing the KPI weights. This highlights that numerous COP
combinations can result in low values for both the number
of HOF and HO latency. Furthermore, it also demonstrates a
weak tradeoff of number of HOF and HO latency with HO
signaling overhead and the number of RLF. This signifies that
either HO signaling or the number of RLF can be minimized
without incurring very high penalty for HOF and HO latency.
Fig. 4 also shows a strong tradeoff between the signaling
overhead and the number of RLF, since minimizing one of
them increases the other significantly. This happens because, in
a bid to reduce the signaling overhead, the optimization engine
attempts to set the COP combinations that will postpone the
HO, resulting in an RLF. These insights can be particularly
useful for operators when determining the KPI weights.

IV. CONCLUSION

With the recent trend towards denser BS deployment and
multi-band operation, mobility management and HO optimiza-
tion have become major bottlenecks. This paper presents a
novel mobility management solution that minimizes four KPIs
including the number of HOF, HO latency, signaling overhead,
and the number of RLF as a function of events A2, A3,
and A5 parameters. We formulate and solve a multi-objective

optimization problem using soft actor-critic RL. To address
the challenge of RL training on a live network, we present
a framework for DT-assisted mobility management that trains
the RL agent on the digital twin of cellular network. This
article also outlines a three-pronged strategy for developing a
digital twin for mobility management. Results reveal that the
proposed RL solution trained on DT can converge to near-
optimal values 7 times faster than brute force. An analysis of
the impact on individual KPI values with varying KPI weights
reveal that HOF and HO latency generally have lower values
and a strong trade-off exists between minimizing HO signaling
overhead and RLF.
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