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Abstract—Data-driven Machine Learning (ML) based propa-
gation models are essential for modern wireless network planning
and optimization. However, their effectiveness is limited by scarse
data conditions. Generative Adversarial Networks (GANSs) often
considered as a viable approach for data augmentation, struggle
in these conditions because they also require large datasets for
effective training. To address this challenge, we propose a novel
approach that incorporates domain knowledge directly into GAN
training. Using an analytical propagation equation based on
3GPP recommendations, we generate pseudo-random data to
train a neural network, which then initializes the GAN generator
network. This initialization improves the GAN’s learning ability
in extreme data scarcity. The framework enhances data genera-
tion quality by up to 52% and machine learning applicability by
60%, providing a robust solution to the scarse data problem in
wireless network modeling with demonstrating the potential of
integrating domain knowledge within ML methodologies.

Index Terms—Propagation Modeling, Generative Adversarial
Networks, Data Sparsity, Domain Knowledge, Weight Transfer.

I. INTRODUCTION

Propagation modeling is crucial for the design and op-
timization of wireless networks, predicting signal strength,
coverage, interference, and system reliability [1]. Models
are typically categorized into empirical, deterministic, and
stochastic types [2]. Empirical models use real-world data
and statistical analysis, deterministic models apply physical
laws and environmental geometry, and stochastic models rely
on random processes and probabilistic channel parameters.
Emerging data-driven and Al-based approaches offer promis-
ing enhancements to traditional methods by utilizing extensive
datasets and advanced algorithms like machine learning and
deep neural networks to capture complex wireless propagation
patterns [2]. These methods train models, such as neural
networks, to understand the intricate relationships between
input variables (e.g., distance, frequency, antenna height) and
outputs (e.g., signal strength or path loss) using data from
actual network operations [3].

However, data-driven models face significant challenges, in-
cluding high computational demands for real-time predictions
and constrained data availability due to privacy issues [4]. A
primary concern is data scarcity from resource-intensive signal
measurement campaigns, leading to datasets that are limited
or geographically restricted [5]. This scarcity impairs model
generalization, particularly in diverse or evolving environ-
ments. Although data augmentation techniques like Generative
Adversarial Networks (GANs) exist, they require extensive

datasets, which exacerbates the data scarcity issue and risks
mode collapse, where models reproduce only a narrow portion
of the data spectrum [5], [6].

A. Related Work

The investigation of ML in the domain of wireless network
propagation modeling and pathloss prediction spans various
environments and methods [7]-[10]. Specifically, [7] confirms
the effectiveness of DNNs for pathloss prediction in macro-
cells across diverse terrains, while [8] enhances ANN design
using a composite differential evolution algorithm, which
improves prediction precision. The incorporation of environ-
mental variables into pathloss models via machine learning
and DNNs is elaborated in [9], underlining their significance
in heterogeneous networks. Additionally, [10] focuses on
precise network coverage predictions and the interpretability
of models, essential for their practical deployment. Progress
in 3D propagation modeling is explored by [1], addressing
intricate spatial dynamics and merging Al interpretability
with detailed 3D modeling to develop advanced tools for
autonomous network design.

Despite these advancements, ML-based propagation models
face significant challenges, notably the scarcity of varied,
large-scale datasets which skews model performance towards
urban settings and diminishes effectiveness in rural or varied
terrains [11]-[13]. To combat this, recent studies have utilized
GANSs for data generation and augmentation. For instance, [6]
introduces a dual-phase learning framework with conditional
GANSs that enhance radio map estimation accuracy, particu-
larly in under-documented outdoor environments. Similarly,
[14] employs GANs to generate detailed path loss maps,
treating path loss prediction as an image synthesis problem,
which effectively manages complex urban layouts and diverse
terrains. These approaches leverage GANs’ ability to replicate
spatial dependencies in images, demonstrating their utility in
creating accurate radio maps from varied data sources.

Data-driven machine learning-based propagation modeling
greatly benefits from incorporating diverse network and envi-
ronmental parameters in tabular data formats, which, unlike
image data, include both discrete and continuous variables
without spatial correlations. This complexity and the typi-
cally scarce nature of tabular datasets in real scenarios pose
significant challenges as they require extracting meaningful
patterns from limited data points without image-like contextual



cues. To effectively train a typical GAN and achieve high-
quality data generation, an ample supply of training data is
crucial. However, to produce this abundance of data through
synthetic generation, a well-trained GAN is required. This
cyclical relationship creates a paradox where the scarcity of
training data impedes the development of a robust GAN, while
a lack of a robust GAN hinders the ability to generate synthetic
data that could alleviate the data scarcity.

To overcome these obstacles, innovative adaptations of
GAN architectures or alternative ML strategies are necessary
to effectively utilize scarce tabular data for detailed prop-
agation modeling. To the best of the authors’ knowledge,
no existing work focusing on enhancing tabular data-based
propagation modeling performance through domain informed
GAN-based data augmentation. Therefore, this work aims to
address this gap as summarized in the following.

B. Contribution Summarized

The summary of the proposed work is discussed below.

o We develop a GAN-based synthetic data generation and
augmentation framework to enhance data-driven propaga-
tion modeling performance in extremely scarce datasets.
This framework incorporates the domain knowledge into
GANs by leveraging the pseudo-random data generated
from an analytical propagation modeling equation derived
according to the 3GPP recommendations.

o After performing some sanity checks on the pseudo-
random data, in the first stage, a DNN model is trained
to learn the relationship between received signal strength,
and crucial channel and antenna parameters such as dis-
tance, Base Station (BS) height, 3D antenna angles. Then,
weights of the trained DNN model are transferred to GAN
generator network, and serve as the initial weights in the
GAN training on real scarce data in the second stage
of proposed framework. The propose framework also
includes the GAN synthetic data quality based validation,
which directs the learning of the generator and discrimi-
nator networks to improve the quality of generated data.

o The proposed framework is evaluated for the quality of
generated data measured as column shape and column
pair metrics, and ML applicability of augmented data
measured as the prediction performance of ML mod-
els, for different combinations of training and synthetic
data sizes. It is demonstrated that, when compared with
baseline schemes, i.e., Gaussian Copula, Conditional Tab-
ular GAN (CT-GAN), the proposed approach exhibits
up to 12.2%, and 52% improvement for GAN quality
metrics, respectively. Similarly, the Root Mean Square
Error (RMSE) and Adjusted R2 prediction performance
on augmented data demonstrate up to 19.5% and 60.8%
improvement from the baseline schemes.

Rest of the paper is organized as following. In section II, we
discuss the formulation of domain knowledge based analytical
equation, working of the proposed domain informed weight
transfer GANs, and synthetic data generation, evaluation,
augmentation, and ML based propagation model training

modules of the proposed framework. The simulation setup
and performance evaluation in terms of GAN data generation
quality, ML applicability are discussed in section III.

II. DOMAIN INFORMED GANS FRAMEWORK

In this section, we discuss the formulation of domain
knowledge based analytical equation, working of the proposed
domain informed weight transfer GANs, and synthetic data
generation, evaluation, augmentation, and ML based propaga-
tion model training modules of the proposed framework.

A. Domain knowledge-based analytical equation formulation

In order to utilize the domain knowledge in ML model
training, we start by identifying the relevant analytical equa-
tion which should have significant critical parameters that
accurately represent the physical and geometric attributes of
the signal propagation environment. Also, these parameters of
analytical equation should be present in the dataset typically
used to train ML models for data driven propagation models.
Although, the choice of these parameters depends on various
factors, such as the considerations about the underlying envi-
ronment, and operating frequency, our domain knowledge of
the wireless propagation field helps to identify these features,
which should include the distance between User Equipment
(UE) and its serving base station (eNodeB), transmit power,
horizontal and vertical antenna angles etc. The Reference
Signal Received Power (RSRP) which serves as the received
signal strength metric at a specific location is given by:

P,JdBm] =P, — PL+G— L+ X, (1)

where F; is transmitted power by the eNodeB, PL is path loss,
G is antenna gain, L indicates attenuation from obstacles, and
X covers additional losses. As per 3GPP TR 36.873 [15], the
path loss for LOS is given as,

PLios(d, fe) = 22.0log;,(d) 4+ 28.0 + 201og,o(fe), (2)
and for the NLOS it is given as,

PLNLOS(fCa VVv h7 hbsv huea d) =20 logIO(fC)
—7.1log;o(W)+14.91og,o(h) —18.76 log o (hps) — 0.6 (hye)

where hps, and he, are the heights of BS and UE antennas,
W is the street width, d is the distance between UE and BS,
and f. is the carrier frequency. Antenna gain G is defined
as the product of the maximum antenna gain G4, and the
antenna attenuation A, expressed as Guax (Bh, By, () =
(D = (5% The value of Ay is estimated follow-
ing 3GPP guidelines: A.;; = A, min[12(%+f““)2,/1v] +
AR min[12(9“%‘1”)2, Ap]. This comprehensive analytical for-
mula for RSRP calculation incorporates various aspects of
signal propagation. B and B, represent the horizontal and
vertical half-power beam widths, 6,, 6,.; are the azimuth
angles, whereas, ¢,, ¢, are the tilt angles for BS and
UE. A\, and )\, represent the weighting factors for the beam
pattern in both directions. The final equation (4) is obtained
by combining these components as shown on top of page 3.
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Fig. 1: The framework to explain the working of proposed Weight Transfer based domain informed GAN (WT-GAN) approach.
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B. Proposed Domain Informed Weight Transfer GAN (M1)

In this section, we explain the working of proposed weight
transfer based domain informed GANs depicted in Fig. 1.
The key idea behind this approach is to utilize the analytical
equation in (4) to generate pseudo-random data for different
configuration parameters such as the transmit power, distance,
and antenna angles. Then, we perform the exploratory data
analysis, and some sanity checks, such as the value ranges
and trends of different variables of this data with respect to
individual parameters, to ensure that this data is truly capturing
the propagation modeling relations between parameters and
target variable. Then, in the first stage of proposed approach,
we train a DNN model to learn the relationships in pseudo-
random data from analytical equation. We term this model as
G1, and the weights of the trained G1 are then utilized as the
initial weights for the Generator Network G2 in the second
stage. This approach provides a mechanism to incorporate
the domain knowledge into ML based propagation modeling,
specifically to the generator of GANs by learning the knowl-
edge of complex relationships and inter-dependencies between
these parameters and target RSRP.

The second stage of the proposed approach is similar to
conventional GAN which involves, two neural networks - a
generator and a discriminator - that are trained simultaneously
through a competitive process. However, in each training iter-
ation, the generator is initiated by the weights from the trained
model from stage 1. The generator creates synthetic data
samples, while the discriminator evaluates them and provides
feedback to the generator. This feedback loop continues until
the generator produces data that is indistinguishable from real
data on which GAN training is performed. It should be noted
that the real dataset used for GAN training is different from

d)ue — ¢bs — abs

Bv Bh
the pseudo-random data generated from the equation in the
sense that the former is obtained either from real networks or
by simulating the realistic propagation modeling environment
in a planning tool. However, it should have some common
features with the parameters of pseudo random data to enable
the effective learning and transfer of knowledge.

We also improve the GAN training process by incorporating
the real time data generation quality based GAN validation
into the training process. Since, the loss values of generators
and discriminators exhibit fluctuations, it is difficult to track
the learning or validations through their losses. Hence, we
utilize the GAN data generation quality in each iteration as the
validation metric, which not only guide the learning process
but also serves as the metric for early stopping criteria to
achieve the convergence in GAN training.

)%, Apl. ()

C. Data Preparation and Training of GANs

Now we discuss about obtaining the realistic data for GAN
training following the system model and feature engineering.

1) System Model and Feature Engineering: We simulate a
3GPP compliant 5G network system in Atoll [16], across a
3 sectored multi-macrocell simulation area in Brussels [1].
Leveraging ray-tracing, it allows to accurately model the
network topology, and incorporates the realistic antenna de-
signs, terrain elevation data, urban infrastructure, and the Aster
propagation model to which simulates phenomena like signal
diffraction, reflections, and environmental attenuations. This
sophisticated modeling ensures the raw data generated reflects
realistic propagation scenarios. However, despite being high
accurate, the Atoll is computationally inefficient to generate
large datasets for propagation modeling, hence, its data is aug-
mented by GAN generated synthetic data for better modeling.



The collected raw data has three important components:
BS data, geographic information, and UE measurements.
BS data encompasses antenna positioning, orientation etc.,
while geographic data offers insights into terrain elevation,
building heights, and land usage. UE measurements include
received signal strength and location data. To maximize the
effectiveness of ML models, feature engineering is applied
to convert raw data to right data. This involves transforming
the raw data into meaningful features that capture propagation
characteristics like distance, diffraction, and angular separa-
tion between BS and UE. These features involve distances
(generally indoor and outdoor paths taken separately), clutter
information, number of penetrations in the building, diffraction
points, and angular separations of BS and UE. Readers are
encouraged to Sections II-C of [1] for further details on the
feature engineering methodology, and from these engineered
features we have resorted to 9 highly impact features for our
analysis, shown in top of Table I

2) GAN Training and Validation: We utilize the real dataset
depicted in proposed framework in Fig. 1 for the training and
real-time validation (dark green lines in Fig. 1) of proposed
WT-GAN approach. To achieve the later, we utilize the trained
GAN to generate synthetic data after each training iteration of
GAN and compare it with validation data from real dataset.
This validation metric is formed as the average of similarity
and correlation metrics, i.e., column shape, and column pair
trends discussed with details in III-B, from [17]. Along with
weight transfer, this validation approach assists the GAN
models to avoid being stuck in local optima, and be trained
to generate the best quality synthetic data. Although, it is
previously discussed and will be clear in result discussion
that we consider extremely scarce data set for GAN training,
however, we set aside an ample amount of data from real
dataset for real-time GAN validation, post augmentation data
evaluation, and model testing in inference phase.

D. Synthetic Data Generation Module (M2)

After completing the training of proposed WT-GAN, it is
employed to generate synthetic data of required number of
instances in M2 module. To further ensure the high quality of
synthetic data, we employ an evaluation block where quality
of synthetic data is evaluated by comparing it with real data
set for column shape and column pair trends metrics. This
is followed by a satisfactory quality check, an arbitrarily
selected threshold using domain knowledge, to only allow the
high quality synthetic data for data augmentation, otherwise
requiring to redo the whole process (red lines in Fig. 1)
of analytical equation formulation, stage 1 and stage 2 of
proposed WT-GAN approach.

E. Model Training and Inference Modules (M3)

In this module, we aim to check the ML applicability of
proposed approach, by training the DNN based regression
model on augmented data for propagation modeling. Hence,
this process involves the blocks for relevant preprocessing
and model training, and model predictions & evaluation, and

Table I: Parameters for simulation setup and analytical prop-
agation modeling.

Parameter Description Symbol
Transmit Power (P) [10, 43] dBW
Distance (3D) (dsp) [10,1000] m

Frequency and Bandwidth (f., W) 2.4 GHz, 20 MHz
BS Tilt Angle (¢bs_sit) [0, 6]°
UE Tilt Angle (¢ue_in) [—86, —9]°
BS Azimuth Angle (Bbs_azim) [40, —320]°
UE Azimuth Angle (Que_azim) [0, —360]°
Horiz. and Vert. Antenna Gain (A, A,) 30 dB
Horiz. and Vert. Beamwidth (B}, B,) 65°
UE and BS Heights (hue, hbs) 1Im, 30 m

Path Loss Exponent (X) 50

Shadowing Factor (¢) 0.7
DNN and GAN Models Architecture 5 by 50

augmented data is passed through these!blocks as shown by
light green line in Fig. 1. Also, for the purpose of calibration
and evaluation these processes are separately followed for real
dataset as well (blue line in Fig. 1). Hence, model prediction
performance for the real non augmented dataset serve as the
benchmark for the augmented case. In the following section,
we discuss the simulation setup and carryout the performance
evaluation of the proposed framework.

ITII. SIMULATION SETUP AND PERFORMANCE EVALUATION
A. Experimental Setup

The experimental setup employs Atoll software to simulate
a network environment that encapsulates a geographic area of
1000m x 1000m, served by 10 macrocells. The parameters
governing the simulation are detailed in Table I. This area
is segmented into discrete bins, within each of which the
RSRP values are calculated for multiple users. The RSRP
value for each bin is determined by averaging the RSRP values
among all users located within that bin. A total of 1000 users
are distributed across the simulation area following a Poisson
distribution. The dataset encompasses 5000 instances, subsets
of different sizes for GAN training, and for the purpose of test-
ing, which includes GAN data generation quality assessment,
and ML applicability performance evaluation of baseline and
proposed schemes, about 2500 instances are kept aside.

B. Evaluation of GAN Data Generation Capability

In this section we focus on evaluating the data generation
capability of proposed and base line schemes. However, before
delving into discussion of the actual numbers and trends,
we discuss the baseline schemes, and evaluation metrics in
the following description. To evaluate the data generation
capabilities of our proposed scheme, we compare it with
two baseline methods: Gaussian Copula and CT-GAN from
SDV [18], for two performance evaluation metrics: Column
Shape, and Column Pair Trends from SDMetrics [17].

The Gaussian Copula is a statistical technique synthesizes
data by first capturing the probability distributions of individ-
ual columns using an inverse cumulative distribution function
transformation. It then learns the correlations between vari-
ables to construct a copula model—a multivariate distribution
that encapsulates these relationships. The method generates
synthetic data by sampling from this model, maintaining the



correlation structure of the original dataset. CT-GAN operates
within a GAN framework, tailored for tabular data. It manages
non-Gaussian distributions and imbalances in discrete columns
effectively. Continuous variables are modeled using a varia-
tional Gaussian mixture model to accurately represent various
distribution modes, and it includes a conditional generator for
synthetic data based on discrete variable values. The “Column
Shape” is measured as Kolmogorov-Smirnov complement
based similarity between various columns of original and
synthetic data, and average over all column is taken as a
single metric. The “Column Pair Trends” metric is measured
as Pearson correlation similarity and assesses the preservation
of correlations, trends, and dependencies, found between pair
of features in the original dataset. Ensuring accurate reflection
of inter-feature relationships in synthetic data is crucial for
predictive modeling of applications involving these dynamics.

Fig. 2 provides a comparative analysis of the synthetic data
generation for the baseline and proposed methods, against
hierarchical combinations of training and synthetic data sizes
as shown on x-axis. This structured visualization offers a clear
comparative perspective, allowing for in-depth analysis of
each model’s performance across different data. Our analysis
of Column Shape metric in top subfigure indicates that the
proposed approach outperforms the baseline schemes in all
combinations of training and synthetic data sizes. Specifically,
it shows an average improvement of 12.2% and 9.45% com-
pared with CT-GAN and Gaussian Copula schemes, respec-
tively. Further the comparison with respect to training and
synthetic data combinations depicts that that larger training
datasets exhibit noticeable improvement in this metric, by
providing a more robust learning environment. Specifically,
we get the best improvement of 1.1% with WT-GAN, and
0.69% with CT-GAN, when training data varies from 1K
to 2K and synthetic data is 1K. Similarly, the performance
improvement with Gaussian Copula is more prominent with
2.1% increase against training data increase from 1K to 2K,
and synthetic data size of 2K. This finding supports the
notion that more real-world data equips models to better
replicate statistical nuances. However, increasing the size of
synthetic data tends to degrade performance, suggesting a
trade-off between data volume and model effectiveness. In this
comparison, most significant fall of —2.53% is also observed
with Gaussian Copula when synthetic data increases from 1K
to 2K, and training data size of 1K. Hence, it can be concluded
that a larger training dataset enhances a models capacity to
discern complex patterns, while an increase in synthetic data
exerts more strain on the models, potentially stretching their
capability to maintain quality.

We compare the “Column Pair Trends” metric, in lower
subfigure of Fig. 2. The proposed WT-GAN approach again
outperforms the CT-GAN and Gaussian Copula schemes for all
combinations of training and synthetic data sizes. Averaging
the performance improvements over all these combination,
WT-GAN exhibits about 16.4% improvement against CTGAN
and 52.3% improvement against Gaussian Copula. Similar
to previous metric, we also observe improved performance
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Fig. 2: Comparing the (a) Column Shape and (b) Column Pair Trends
metrics for three comparing schemes (2 baseline and 1 proposed)
against different combination of training and synthetic data sizes.

with increased training data, and performance decrease with

increased synthetic data. However, one notable aspect is the
significantly low values of Gaussian Copula indicating that this
scheme fails to effectively capture the correlations between
various columns/features of the dataset.

C. Evaluation in terms of Machine Learning Applicability

Synthetic data generation and augmentation is crucial in
scenarios with limited data, but its effectiveness is contingent
on its relevance and performance in machine learning tasks.
Hence, we evaluate GAN-based data augmentation techniques
by training a DNN regression model across three augmented
data sizes and evaluating the results for two regression metrics,
RMSE and Adjusted R2 score in Fig. 3. RMSE is a standard
metric for regression models that measures the average magni-
tude of the errors between predicted and observed values. R2
is a measure of the proportion of the variance in the dependent
variable that is predictable from the independent variable.
Adjusted R2 is a modified version of R2 that considers the
number of predictors (independent variables) in the model.

For this comparison, we evaluate the performance of ‘Orig-
inal’ non-augmented data (1K instances) and two augmented
data types: ‘Baseline: Augmented’ using CT-GAN technique,
and ‘Proposed: Augmented’ using WT-GAN approach. It is
observed that for both metrics, GAN based data augmentation
results in improved performance than the non augmented case
shown by horizontal lines in Fig. 2. Specifically, for aug-
mented data size of 2K we observe 8.8% improvement with
baseline and 10.8% improvement with proposed approach,
which respectively extends to 40.42% and 52% for these
schemes for data size of 4K . Also, in both of these metrics the
proposed WT-GAN scheme outperforms the baseline schemes
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comparing schemes (2 baseline and 1 proposed) against different
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for all data augmentation cases, i.e., showing 2.2%, 18.2%,
and 19.5% lower RMSE than baseline scheme for 2K, 3K,
and 4K augmented data sizes, respectively. This comparison
further validates the importance of data augmentation by the
fact that with data size increase of 2K to 4K, the RMSE
performance improvement of proposed scheme gets better.
Similar to RMSE comparison, we observe the improvement
of both augmented schemes with non-augmented counterpart
with a significant margin for Adjusted R? scores metric,
which keeps on increasing with the increase in data sizes
as shown in bottom in Fig. 2. Also, the comparison between
both augmented schemes, baseline and proposed, shows that
proposed approach outperforms the baseline for all data sizes,
showing the improvement of 34.9%, 67.6%, and 60.8%, for
2K, 3K, and 4K data sizes, respectively. These improvements
highlight and validate the machine learning applicability of
synthetic data generated by GAN based data augmentation.

IV. CONCLUSION AND FUTURE WORK

This research offers a comprehensive solution to data
scarcity in developing data-driven propagation models for
wireless networks. Leveraging pseudo-random data from an
analytical equation, we integrate domain knowledge into GAN
training through DNN model weights. This approach enables
high-quality data generation even with limited training datasets
of 1K samples. Our results show significant improvements in
GAN data generation quality and ML applicability, confirming
the efficacy of this method under stringent data sparsity. This
work highlights the potential of domain knowledge to over-
come data scarcity, marking a major advancement in the field.
In the future, we plan to expand this analysis by considering a

broader range of parameters in the analytical equation, varying
pseudo-random data sizes, and experimenting with different
model architectures in both stages of the proposed framework.
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