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Abstract—Mobile cellular network operators spend nearly a
quarter of their revenue on network management and mainte-
nance. Incidentally, a significant proportion of that budget is
spent on resolving outages that degrade or disrupt cellular ser-
vices. Historically, operators mainly rely on human expertise
to identify, diagnose, and resolve such outages. However, with
growing cell density and diversifying cell types, this approach is
becoming less and less viable, both technically and financially.
To cope with this problem, research on self-healing solutions
has gained significant momentum in recent years. Self-healing
solutions either assist in resolving these outages or carry out
the task autonomously without human intervention, thus reduc-
ing costs while improving mobile cellular network reliability.
However, despite their growing popularity, to this date no survey
has been undertaken for self-healing solutions in mobile cellu-
lar networks. This paper aims to bridge this gap by providing
a comprehensive survey of self-healing solutions proposed in the
domain of mobile cellular networks, along with an analysis of the
techniques and methodologies employed in those solutions. This
paper begins by providing a quantitative analysis to highlight why
in emerging mobile cellular network self-healing will become a
necessity instead of a luxury. Building on this motivation, this
paper provides a review and taxonomy of existing literature on
self-healing. Challenges and prospective research directions for
developing self-healing solutions for emerging and future mobile
cellular networks are also discussed in detail. Particularly, we
identify that the most demanding challenges from self-healing
perspective are the difficulty of meeting 5G low latency and the
high quality of experience requirement.

Index Terms—Self organizing network, self healing, 5G, future
mobile cellular networks.

I. INTRODUCTION

AT A TIME when mobile cellular network operators are
competing for customers demanding higher data rates

and greater data capacity at lower costs, keeping revenue
margins up is proving increasingly difficult. Furthermore,
the rising network operating expenses add to the stress on
network operator revenues. Mobile cellular network expen-
ditures are divided into two primary categories, i.e., capital
expenditure which is spent on acquiring and updating network
entities, and operational expenditure which is spent on man-
aging and maintaining existing network resources. Based on
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industry estimates, mobile cellular network operators spend
between 23% and 26% of their total revenue on mobile cel-
lular network operation [1], [2]. A breakdown of operational
expenses reveals that a significant proportion of it is spent on
managing mobile cellular network outages and performance
degradations. Such service interruptions require human inter-
vention and may sometimes go unnoticed leading to poor
customer experience, and eventually leading to high customer
churn. According to one survey estimate [3], mobile cellular
network operators worldwide spent nearly $20 Billion in the
year 2015 to counter issues caused by network outages and
service degradations which accounts for nearly 1.7% of total
revenue and nearly 7% of total operational expenses.

The inevitable introduction of 5G technologies for mobile
cellular networks brings with it a key challenge of increased
load on network resources in terms of network performance
management. The primary solution to this challenge proposed
by researchers and the mobile cellular network standardization
body, 3GPP, is the deployment of Self-Organizing Network
(SON) solutions to automate processes that would otherwise
require skilled human input. SON are broken down into three
key areas: Self-configuration, Self-optimization [4] and Self-
healing [5]. Self-configuration is dedicated to solutions that
autonomously configure mobile cellular network nodes for
plug and play. Self-optimization is related to solutions that tar-
get mobile cellular network performance optimization based
on operator specifications. Self-healing is focused on solu-
tions that identify performance issues in the mobile cellular
network such as cell outages and key performance indicator
(KPI) degradations. On top of the three components of SON
mentioned above, Self-coordination was also introduced by the
3GPP as part of Release 10 specifications for 4th Generation
mobile cellular networks [6] to address the potential con-
flicts arising between SON solutions that would lead to KPI
degradations.

To understand how the four SON components are related, a
generalized SON framework is given in Fig. 1. While Self-
configuration and Self-optimization represent more implicit
areas of operational expenditure reduction, Self-healing pro-
vides the clearest quantifiable path towards operational expen-
diture reduction by minimizing the impact of mobile cellular
network outages [3]. These include outages caused due to
failure of physical or soft components of the network enti-
ties, rendering them non-functional and causing complete or
full outage, or significant service degradations leading to par-
tial outage that may not necessarily generate any system level
alarms.
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Fig. 1. Self-Organizing Network Framework for Cellular Networks.

An overview of the key research drivers for Self-healing are
presented as follows.

A. Reduction of Network Operating Expenses

As mentioned already, mobile cellular network operators
can spend as much as 1.7% of the total revenue on fixing issues
due to network outages. Network outages have the potential to
disrupt service to millions of subscribers, as recently observed
in case studies [7] and [8]. Overwhelming reliance on man-
ual outage detection, diagnosis and compensation not only
slows down the recovery process, but is also more expensive
than autonomous solutions. Thus, autonomous Self-healing
solutions are one of the most inviting areas for mobile cel-
lular network operators to cut down their operational costs for
managing network outages.

B. Increase in Network Data

The limited capability of human experts to absorb large
amounts of network information at the same time and coming
to conclusions about the existence of outages or KPI degrada-
tions in the mobile cellular network means that as the number
of entities in the network grows, the number of experts to
monitor the network would grow proportionally. This will
put further strain on the operators’ already inflated operating
expenses. Self-healing can reduce the load on human experts
by providing solutions for the detection of service degradations
and disruptions.

C. Complexity of Network Architecture

With small cells expected to make up a significant part of
future cellular network infrastructure [9], solutions specifically

Fig. 2. Outage Probability of One Cell with Increase in Cell Density.

focusing on them must be developed. This concern is further
fueled by the fact that small cells are subject to sparse report-
ing due to the low percentage of users associated with them
and a more packed mobile cellular network topology in terms
of inter-node distances. This makes it more difficult to identify
service disruptions at small cells through traditional means.

D. Increase in Network Density

The increasing number of radio nodes in the 5G mobile cel-
lular network can result in an increase in node failures [10].
This is demonstrated in Fig. 2, which shows the outage prob-
ability of a cell as mobile cellular network density increases,



1684 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 3, THIRD QUARTER 2018

obtained using a Poisson distribution-based method for esti-
mating node failures derived from [10]. Fig. 2 shows the
probability of a single node failure in one day (lower line
chart), in three days (middle line chart), and seven days (top
line chart). We can see that probability of node failures is rel-
atively low in a low density network such as a 2nd Generation
mobile cellular network. However, as the network density
increases, the probability of node failure increases, so much
so that on any given day the probability of node failure could
be anywhere between 60% and 99.8%.

Hardware failures are already a significant area of concern
for network operators. Turner et al. [11] present an analysis of
customer complaints over a period of nine months in an enter-
prise network. The authors conclude that nearly 39% of all
customer complaints are due to hardware failures. Therefore,
it is safe to assume that if the number of network nodes is
increased significantly, the corresponding probability of hard-
ware failure will also increase. In wake of increasing number
of nodes per unit area, dealing with such high rates of node
failures will be very difficult if mobile cellular network oper-
ators continue the practice of manual outage management. In
short, Self-healing solutions will be less of a luxury and more
of a necessity in future 5G networks.

E. Increase in Network Parameters

With the introduction of 5G services and the associated
technologies discussed above, the number of configuration
and optimization parameters are expected to grow signif-
icantly [12]. The increasing number of network control
parameters and entities can raise the probability of parame-
ter misconfiguration significantly. The frequency and impact of
parametric misconfiguration have been noted by Yin et al. [13].
Based on an analysis of a large number of customer com-
plaints, the authors conclude that nearly 31% of high-severity
customer complaints are due to misconfigured parameters. Out
of this, 85.5% issues were due to mistakes in parameter config-
uration and in only 15% of the cases does a misconfiguration
lead to an actual alarm. Otherwise, the misconfiguration is
only identified when a customer complains about service out-
age. Though the actual count of customer complaints is not
shared in [13], if we assume that there are 2000 parameters in
the network and 10,000 complaints are received over a period
of two years, the probability of a parametric misconfiguration
every 100 days is 1.5%

A quantitative analysis of parameter misconfiguration in 5G
mobile cellular networks is presented in Fig. 3 which shows
the probability of misconfiguration of one parameter per cell
every 100 days as the total number of configurable parameters
per cell increases. The parameter misconfiguration probability
is also derived using the Poisson distribution-based method
of failure estimation presented in [10]. In Fig. 3, three dif-
ferent probabilities, 0.01% (bottom line chart), 0.05% (middle
line chart), and 0.1% (top line chart), of parametric miscon-
figuration per 100 days are assumed. These probabilities are
well below the parameter misconfiguration probability esti-
mated from [13]. Furthermore, since the data in [13] comes
from an analysis of customer complaints, it is safe to argue

Fig. 3. Probability of Single Parameter Misconfiguration with Increase in
Configurable Parameters.

that parametric misconfiguration does lead to a disruption of
service. From Fig. 3 it is clear that parametric misconfiguration
will become a major concern for mobile network operators in
5G networks.

F. Increased Focus on (Quality of Experience) QoE Calls for
Increased Focus on Self-Healing

Very high user QoE requirements in 5G mobile cellular
networks mean near ubiquitous spatial and temporal network
availability for various 5G use cases. State-of-the-art network
availability estimation process depends on classic drive test-
based methods. However, the process is time and resource
consuming while lacking comprehensiveness due to inacces-
sibility of a major portion of the network, i.e., all areas other
than paved roads. Therefore, better methods are needed for
network availability estimation and outage detection for 5G
networks.

Additionally, low latency requirements for several 5G use
cases mean that classic methods of manual outage diagnosis
and manual outage compensation will not suffice. To address
this challenge autonomous mechanisms to compensate outages
quickly and seamlessly need to be developed.

G. Past Work and Contributions

In terms of mobile cellular networks, SON and Self-
optimization have received significant attention, with com-
prehensive studies published highlighting the contributions
in both areas. Aliu et al. [14] present an overview of the
recent studies carried out under the scope of SON for cellular
networks, while Peng et al. [15] have presented an overview
of state-of-the-art in Self-configuration and Self-optimization
in mobile cellular networks.

Another area of automation in wireless networks are cogni-
tive radio technologies. Cognitive radio technologies refer to
dynamic spectrum access techniques that enable need-based
bandwidth allocation to mobile users via heterogeneous physi-
cal layer resource usage [16]. A survey of cognitive radio tech-
nologies has been presented by Akyildiz et al. [17]. Discussion
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on state-of-the-art and future challenges of cognitive radio
technologies has been presented by Akyildiz et al. [18] while
Akhtar et al. [19] have discussed the exploitation of unlicensed
and unused spectral resources for dynamic spectrum alloca-
tion. Furthermore, Zhang et al. [20] have presented a survey
of the research studies on Self -optimization for cognitive radio
technologies.

In terms of Self-healing, a survey of applications from natu-
ral systems to software engineering has been presented in [21]
where analogies between self-rectifying software systems and
natural systems have been studied. Psaier and Dustdar [22] dis-
cuss the applications of Self-healing in autonomous systems
pertaining to the fields of information technology and com-
munications. Furthermore, Paradis and Han [23] have sur-
veyed studies on Self-healing capabilities in wireless sensor
networks.

Self-healing techniques in mobile cellular networks have
briefly been discussed in [14] in the larger context of SON. The
authors have presented description of Self-healing in mobile
cellular networks accompanied by a review of four outstand-
ing works in the area. Since the publication of [14], research
on Self-healing techniques for mobile cellular networks has
grown significantly and, to the best of our knowledge, this
study is the first attempt to provide a consolidated review of
these developments. With the efforts to propose and standard-
ize SON solutions for 5G technologies reaching their climax,
the need for a comprehensive study on Self-healing highlight-
ing the efforts of research groups, equipment manufacturers
and standardization bodies could not be higher. Furthermore,
this study aims to go well beyond the limited contributions
of [14] towards surveying Self-healing techniques for mobile
cellular networks by breaking down the studies in terms of the
type of outages, the measurements and methodologies used,
and their results.

The primary contributions of this paper are summarized as
follows:

• This paper identifies the need for Self-healing solu-
tions in the wake of 5G mobile cellular networks
and explains why Self-healing functionality will not
remain a luxury but will become a necessity in 5G and
beyond.

• The paper provides a brief introduction and tutorial on
Self-healing and provides comprehensive review of major
contributions from individual projects and collective stan-
dardization efforts undertaken so far with respect to
Self-healing for mobile cellular networks.

• Following the intrinsic flow of Self-healing in nature
and in practical applications, the paper organizes
the literature on Self-healing into the three primary
areas of Self-healing, i.e., Detection, Diagnosis and
Compensation.

• The paper further categorizes the reviewed studies
on Self-healing in terms of the network topology,
performance metrics, control mechanisms, and method-
ologies used for detection, diagnosis and compensation
of full and partial outages in a mobile cellular network.
This allows easy understanding and comparison of studies
within each particular area of Self-healing.

TABLE I
KEY ACRONYM DEFINITIONS

• The paper presents comprehensive discussion of chal-
lenges in Self-healing and identifies the research direc-
tions therein. Notably, it discusses the two primary types
of challenges faced by existing Self-healing solutions to
adapt to 5G network requirements: 1) challenges that
stem from ambitious QoE and low latency requirements
in 5G, and 2) challenges that arise from the idiosyn-
crasies of anticipated 5G technologies, i.e., ultra-dense
deployments, millimeter wave cells (in which outage is
the norm, not anomaly) and increased rate of emergence
of sudden traffic hotspots due to higher data rate per users
leading to sudden change in KPIs (partial outage).

• In order to enable the advancement of research in Self-
healing solutions for future 5G mobile cellular networks,
we also discuss possible solution methodologies for each
of the aforementioned challenges.

The organization of this paper is as follows: Section II
presents a brief tutorial on SON and Self-healing including
possible taxonomies. Section III presents key definitions and
terminologies used in the development of Self-healing solu-
tions for mobile cellular networks. Based on the generally
accepted trifurcation of Self-healing in literature specific to
mobile cellular networks, Sections IV–VI provide a survey of
Detection, Diagnosis and Compensation techniques for out-
ages occurring in mobile cellular networks respectively. In
Section VII, we identify key challenges faced by Self-healing
paradigm to become adaptable by 5G and beyond, along with
prospects for future work in the field of Self-healing for mobile
cellular networks. Section VIII concludes the key aspects of
this survey. For ease of reference, key acronyms are given in
Table I.

II. SELF-HEALING: BACKGROUND STUDY

A. Self-Organizing Networks in Cellular Mobile Networks

SON functions gained popularity with the introduction
of 4th Generation cellular networks, primarily due to the
increased network complexity. The efficacy of a SON function
depends on four key design components [24]: Autonomy: SON
functions must be independent of human input, Scalability:
Any SON functions deployed in the mobile cellular network
must be scalable in terms of both time and space, Adaptability:
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The functions must be able to adapt to outside influences and
internal failures. Additionally, it has been proposed that future
SON networks must be intelligent [12], i.e., they must be
able to learn from the information generated by the users and
mobile cellular network entities to become completely inde-
pendent in terms of adapting network parameters based on the
primary goals of the operator.

As described previously, SON functions for cellular
networks can be broadly classified into three main categories,
i.e., Self-configuration, Self-optimization and Self-healing,
with Self-coordination being introduced to manage SON func-
tion interactions. Since SON functions in general [14] and
Self-optimization in particular [20] have already been the sub-
ject of comprehensive studies, this study is aimed at covering
the work done in the domain of Self-healing for mobile cellular
networks.

B. Self-Healing in Mobile Cellular Networks

Traditionally, mobile cellular network operators employ
human experts to detect, diagnose and recover the network
from any faults and outages in the network. As per the stan-
dard fault management framework defined by the 3GPP [25],
faults and outages include issues such as hardware failures
of mobile cellular network nodes, software failure issues at
the nodes, failures of functional resources in which case no
hardware component is responsible for the fault, loss of node
functionality due to system overloading, and communication
failure between two nodes due to internal or external influence.
In such cases, the node will become completely dysfunctional
leading to a full outage. As per 3GPP specifications, faults
must be accompanied by the generation of an alarm that iden-
tifies the node and the type of failure that has occurred. The
alarm may contain additional information to aid the recov-
ery of the system but that is dependent on the equipment
manufacturer.

Conversely, many service affecting issues in mobile cellu-
lar networks do not generate alarms or may not specifically
be classified as faults or failures. Such issues are labeled
partial outages. One such example is the degradation of a
performance metric due to sudden changes in the mobile cel-
lular network environment. Partial outages may include service
degradations due to environmental effects, sudden variations in
traffic, or the presence of man-made interference sources that
hinder normal operation of the network. Thus, mobile cellular
network operators are dependent on human experts to mon-
itor the network data to identify any such anomalies and to
execute recovery actions to counter them. However, with the
advent of 4G and the growth in network sizes and subscribers,
network operators can no longer rely purely on human experts
to sift through the vast amounts of network performance data
generated consequently in search of anomalies.

1) Research in Self-Healing: Self-healing specifically for
cellular networks has been studied as part of several research
projects focusing on SON for cellular networks includ-
ing the EUREKA Gandalf project [26] which explored the
parametric interactions in 2G, 2.5G and 3G networks with
the environment and studied the impact of automation in

wireless networks, especially UMTS and Wi-Fi networks. The
key deliverable of the project was Bayesian Networks based
fault identification and diagnosis toolkit.

Similarly, the SOCRATES project [27] was aimed at investi-
gating the impact of automation particularly in LTE networks,
while the QSON project [28] investigated SON solutions
primarily for Self-optimization and Self-healing along with
preliminary analysis of the interactions of parameters and met-
rics as part of SON coordination. The project investigated
new techniques, especially the exploitation of big data ana-
lytics [12], to empower existing SON solutions. Recently,
the SEMAFOUR project [29] has been launched which aims
to develop a unified self-management system for hetero-
geneous radio access networks, comprising multiple radio
access technologies and SON solutions including solutions for
network anomaly detection, diagnosis and compensation for
4G standards and possible future 5G cellular networks.

2) Self-Healing Framework for Cellular Networks: As the
number of physical entities in a network increases, the prob-
ability of network outages, both full and partial, increases
proportionally as demonstrated in Figs. 2 and 3. In order to
respond to these network outages, typical Self-healing solu-
tions employ a 3-stage framework. The first stage is detecting
network outages for which outage detection algorithms are
deployed. For effective Self-healing, the outage detection solu-
tion must be able to detect both full and partial outages. In
case a network outage is detected, the outage detection solution
flags the effected network node for further actions, depending
on the outage type. For example, in case a cell experiences
hardware failure and is no longer able to send and receive
data, it will be flagged for Self-healing.

Once the outage has been detected, diagnostic algorithms
will execute routines to identify the exact cause of network
outage. For the sample case of hardware failure, the detection
algorithm will examine alarms and fault codes to pinpoint the
hardware component whose failure led to the outage. This
information will then be relayed to the Network Controller
which will either command field teams to replace the failed
component or activate the redundancy elements to take over
operations of failed entity. Conversely, if the outage is partial,
the diagnosis algorithm will break down the degraded KPI or
KPIs in order to identify the reason for the outage.

Upon completion of outage diagnosis, the information is
passed along to the final stage of the Self-healing function,
i.e., outage compensation. In the outage compensation stage,
the Self-healing function determines the impact of outage on
neighboring entities and the subscribers which is then used to
execute changes to mitigate the outage. For example, in the
case of hardware failure, outage compensation solution will
identify the coverage hole created as a result of the outage
and execute changes in neighboring cells to provide temporary
coverage to affected subscribers. Alternatively, in the case of
partial outage, the outage compensation solution may execute
emergency parameter changes at either the affected cell or its
neighbors or both to recover the degraded KPI or KPIs. The
complete Self-healing framework, along with relevant studies
is demonstrated in Fig. 4. A taxonomy of studies based on
these components is presented in Fig. 5.
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Fig. 4. Self-Healing Framework.

III. KEY COMPONENTS OF SELF-HEALING TECHNIQUES

FOR MOBILE CELLULAR NETWORKS

To develop a comprehensive review of the work pertaining
to Self-Healing for mobile cellular networks, we present a col-
lection of key definitions that will enable the reader to quickly
comprehend the nuances of the reviewed studies. The five core
components that constitute the logical structure of these stud-
ies are: 1) methodology, 2) network topology, 3) performance
metrics, 4) control mechanism, and 5) direction of control.

A. Methodology

Each study presenting a solution for detection, diagnosis or
compensation of outages follows an underlying methodology.
These can be split into three broad categories: 1) Heuristic,
2) Analytical and 3) Learning-based. Heuristic solutions fol-
low a set of pre-defined rules and are built upon intuition
or prior knowledge gained from existing literature or experi-
ence. Two heuristic solutions commonly found in literature are
rule-based algorithms, which follow a set of if-else rules, and
frameworks, which mostly consist of guidelines. Analytical
solutions break down a given problem into its mathemati-
cal components which are then solved to achieve an optimal
or close to optimal solutions. Analytical solution method-
ologies include techniques such as convex optimization [30],
non-convex optimization such as pattern search [31], genetic
algorithms [32], simulated annealing [33] etc., multi-objective
optimization [30], and game theory [34]. Learning-based solu-
tions are built on machine learning techniques popularized by
the field of computer science. These algorithms rely over-
whelmingly on user and network data and very little on
expert knowledge [35]. Machine learning techniques are gen-
erally split into three overarching techniques [36], [37], i.e.,
supervised, unsupervised and reinforcement learning.

B. Network Topology

The term network topology is defined as the architec-
ture or layout of the network in terms of cell deployments.
More specifically, network topology is used to describe the
tiered structure of the network. There are two main types of
network topologies used in literature. Homogeneous networks
consist of only one tier of cells. These cells may be only
macro cells with large coverage areas or only small cells
which have lower power, and consequently lower coverage.
Conversely, a combination of macro and small cells forming
a multi-tier cellular network is referred to as a heterogeneous
network or HetNet. While most studies on legacy mobile cel-
lular networks employ homogeneous network topology as the
baseline, HetNets are quickly gaining popularity due to their
flexibility and their potential to achieve the goals set out for
5G cellular networks [38].

C. Performance Metrics

Performance metrics are the benchmark measurements used
to evaluate network performance and can be obtained from
network entities and user-generated reports. The solutions and
algorithms presented in any study rely heavily on the choice
of performance metrics employed in the study to construct
and evaluate them. The performance metrics most relevant to
studies on Self-healing can be classified under the umbrella
term network health.

Network health is a broad term used to describe the
performance of the network in terms of universally accepted
KPIs such as Accessibility, Retainability and Mobility [39].
Accessibility is the ability of subscribers to access the network
resources for data transmission and includes KPIs such as
attach success rate, radio resource control setup success rate,
connection setup success rate, random access success rate etc.
Retainability is the ability of the network to carry a data ses-
sion to its completion without drop and is characterized by the
session drop rate KPI. Mobility is the ability of the network
to allow successful transition of a subscriber from one cell
to another with minimal impact on services and is generally
represented by handover attempt, success and failure rate KPIs.

Additionally, measurements signifying network cover-
age including reference signal received power (RSRP),
and network quality including spectral efficiency, signal-to-
interference and noise ratio (SINR), reference signal received
quality (RSRQ), network and user data throughputs, channel
quality indicators and data latency are also often employed in
the design and analysis of Self-healing solutions.

D. Control Mechanism

Control mechanism is defined as the method of controlling
SON solution functionality and can be categorized by the fol-
lowing methods: 1) Centralized, 2) Distributed, and 3) Hybrid.
Centralized control implies that the SON functions are con-
trolled from one central controller connected to every node
in the network, whereas distributed control implies that the
control of SON functions resides within the network nodes.
Hybrid control is a combination of central and distributed con-
trol and implies that while some SON functions may reside
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Fig. 5. Proposed Taxonomy.

inside a centralized SON controller, other less computation-
ally heavy functions which do not directly impact neighboring
nodes, can be distributed to the nodes.

E. Direction of Control

Direction of control defines whether a SON function is
designed to optimize the node-to-user link, user-to-node link,
or both. Solutions designed to optimize the node-to-user link
are downlink controlled, whereas the solutions optimizing
the user-to-node link are uplink controlled. Some solutions
optimize both downlink and uplink and thus, offer bidirec-
tional control of network performance.

IV. OUTAGE DETECTION IN CELLULAR

MOBILE NETWORKS

While the standardized Self-healing framework [5] does
present a roadmap to a fully integrated Self-healing frame-
work, the precise inner workings of each component have been
deliberately left open-ended. This has allowed researchers and
network equipment manufacturers to come up with propri-
etary algorithms to suit the needs of evolving mobile cellular
networks. In this and the following sections, we describe the

research done in each of the Self-healing framework compo-
nents, beginning with a review of outage detection techniques.
The studies in this section are ordered based on the type of
outage and methodology employed within.

A. Full Outage Detection in Mobile Cellular Networks

The following subsections describe techniques and method-
ologies proposed for full outage detection in mobile cellular
networks. The studies included in this section have been
summarized in Table II in terms of techniques, network
architectures, measurements and tools used within them.

1) Heuristic Solutions for Full Outage Detection: Heuristic
algorithms and frameworks for cell outage detection are
heavily reliant on pre-existing knowledge of domain experts
which makes them extremely useful for deployment in exist-
ing mobile cellular networks. One such framework has been
proposed by Amirijoo et al. [40] which employs rule-based
decision tree algorithm for full outage detection in mobile cel-
lular networks. The framework derives its rules from expert
knowledge to create full outage detection trigger thresholds
for performance metrics such as cell load, radio link failures,
handover failures, user throughputs and cell coverage. A more
comprehensive approach to rule-based outage detection has
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TABLE II
QUALITATIVE COMPARISON OF CELL OUTAGE DETECTION ALGORITHMS

been proposed by Liao et al. [41] that uses variations in user
performance metric distributions to detect outages. The authors
propose the construction of a weighted cost function composed
of channel quality indicator distribution, the time correlation
of channel quality differential and radio resource connection
re-establishment requests. The cost function is treated as a
hypothesis of normal cell performance. A cell is considered
in outage if its neighboring cells fail this hypothesis, i.e.,
their targeted KPIs deviate from normal. The authors demon-
strate that, using measurements from cell edge users, the
proposed algorithm can detect neighbor cell outages almost
instantaneously.

2) Learning-Based Solutions for Full Outage Detection:
Beyond the heuristic methodologies of identifying outages in
the network, machine learning based algorithms have been the
prevailing method for full outage detection in research. Most
of the studies on full outage detection that employ learning
based algorithms can be split into two categories, i.e., super-
vised learning techniques for full outage detection solutions
and unsupervised learning techniques for full outage detection.

a) Supervised learning techniques for full outage detec-
tion: Supervised algorithms are a popular choice in terms of
full outage detection due to their reliance on pre-classified
data. In the study by Mueller et al. [42] have compared
the performance of a rule-based heuristic algorithm against
a decision tree algorithm [43] and a linear discriminant binary
classification function [44] to identify complete cell outages.
The algorithms use user reports containing downlink signal
power measurements to detect when a cell stops featuring in
neighbor cell lists due to outage. The results show that the
expert system is faster but less successful in detecting neighbor
cell outages while the linear discriminant binary classification
function performs the best in terms of true positive detection
rate.

Another supervised learning approach for full outage
detection is developing cell profiles for outage detection.
Alias et al. [45] have proposed to develop performance pro-
files of cells in mobile cellular networks using hidden Markov
chains [46] which track the state progression of network
nodes that undergo outages. The proposed framework requires
execution of controlled outages to build state profiles using
signal quality and signal strength measurements of the out-
age affected cell and its neighbors. These measurements are
then used to identify cell performance in real-time to predict
if a cell has experienced an outage. The results show that the
proposed approach can reach an accuracy of up to 90% in low
fading environments.

Since the idea of executing controlled outages to build cell
profiles may be prohibitive for live mobile cellular networks,
Szilágyi and Novaczki [47] have proposed to construct default
activity profiles of cells using simulated network data to detect
when a cell faces an outage. The proposed algorithm uses level
functions which continuously monitor downlink signal metrics
such as channel quality, call drop rate and handover timing
advance to detect when a cell falls below the acceptable thresh-
old set by human experts. The authors have demonstrated that
the proposed approach can act in near-real time by detecting
outages within a few minutes of occurrence, which is a signif-
icant improvement over the detection time by human experts,
especially in very large networks.

b) Unsupervised learning techniques for full outage
detection: The unique ability of unsupervised learning algo-
rithms to cluster data into distinct groups without any pre-
classification makes them highly popular in outage detection
applications. A major application of unsupervised learning is
the detection of cells that are in outage but do not generate any
alarms, otherwise known as sleeping cells. Detection of such
cells is not immediately possible manually due to the lack of



1690 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 3, THIRD QUARTER 2018

alarms accompanying the outage which makes their detection
a highly useful application of unsupervised learning.

An extensive comparison of clustering algorithms for sleep-
ing cell detection has been presented by Chernov et al. [48]
where they have compared the performance of k-Nearest
Neighbors (kNN) [49], Self-Organizing Maps (SOM) [50],
Local-Sensitive Hashing [51] and Probabilistic Anomaly
Detection. The authors use random access channel access
failure measurements in addition to the high-dimensional
minimization-of-drive-test (MDT) data [52] as input data
for clustering algorithms. To compare the performance of
individual clustering algorithms, receiver operating character-
istics and precision-recall curves are used. The results show
that Probabilistic Anomaly Detection has the best receiver
operating characteristics out of the four algorithms and a
higher precision-recall curve compared to the other algo-
rithms. Additionally, the authors have compared the training
time of the four clustering algorithms which shows that Local
Sensitivity Hashing has a training time of linear order, whereas
Probabilistic Anomaly Detection takes the least amount of
time to detect sleeping cells compared to the other algorithms.

Another clustering algorithm, Dynamic Affinity
Propagation [53], has been utilized for sleeping cell
detection by Ma et al. [54]. The proposed algorithm uses
Dynamic Affinity Propagation to calculate user clusters
based on received power values of neighboring and serving
cells reported by users, while Silhouette index [55] is used
as clustering quality criterion to estimate the number of
significant user clusters. The resultant clustering is mapped
to physical data including user location to identify cells in
outage. While the approach clearly succeeds in identifying
sleeping cells using simulated outages, it is possible that in a
live network, some users suffering deep fade may be wrongly
clustered.

Dimensionality Reduction for Unsupervised Learning:
While the above unsupervised learning solutions have a high
degree of accuracy, their computational cost is equally high
because network and user data can have very high dimensions.
In addition to being resource hungry, the highly dimensional
network and user data may cause increased detection latency
as well as over-fitting. As the implications of these caveats
are likely to surface in large scale real network, they are
not exclusively addressed in above studies that rely on simu-
lated small-scale network and user population for performance
evaluation.

To tackle high dimensional network and user data,
Chernogorov et al. [56] have proposed to construct diffu-
sion maps [57] of user handover attempts and successes data.
These diffusion maps are obtained through Eigen decompo-
sition of Markov matrix obtained from the diffusion maps of
network and user data. The resulting low-dimensional data is
used to create cell coverage dominance maps which are then
used to detect sleeping cells through k-means clustering [58]
of cells into normal and sleeping cell clusters. Alternatively,
Chernogorov et al. [59] have employed principal component
analysis [60] to reduce the dimensionality of network and user
data. The lower dimension data is then used to identify sleep-
ing cell using the FindCBLOF algorithm [61] which separates

clusters of normal cells from sleeping cells. Although a direct
comparison of the results of the approaches in [56] and [59]
has not been presented, the authors separately demonstrate that
the proposed algorithms in [56] and [59] can identify sleeping
cells and the affected neighboring cells as a result of the out-
age with high level of accuracy and also quantify the impact
of the outages in terms of failed handover and call events.

Alternatively, Zoha et al. [62], [63] have addressed the
challenges posed by high dimensionality through multi-
dimensional scaling [64]. Multi-dimensional scaling allows
easy visualization of the high dimensional network and user
data by translating it into fewer dimensions using kernel trans-
formations. This reduces the convergence time of clustering
algorithms. In [62], the resulting low dimensional data is
passed to Local Outlier Factor (LOF) [65] algorithm for sleep-
ing cell identification, whereas kNN and LOF are compared
with each other in [63]. It is observed that kNN outper-
forms LOF in terms of speed and reliability since LOF can
sometimes misclassify normal cells.

The concepts from [62] and [63] are further extended by
Zoha et al. [66] to include comparison of LOF with One-
class Support Vector Machine (OCSVM) algorithm [67] under
different shadowing scenarios. The results show that like
kNN, OCSVM algorithm also outperforms LOF. Since LOF
is limited to identifying localized outliers to cell clusters, the
algorithm is prone to identifying normal cells as sleeping cells.
This is avoided in both kNN and OCSVM because of the
global approach adopted by both algorithms which only iden-
tifies global outliers. However, OCSVM takes significantly
longer to train compared to either k-NN or LOF algorithms.

3) Full Outage Detection in HetNets: In the studies
described above, the target topology for outage detection
was invariably a homogeneous mobile cellular network of
macro cells. Due to the large serving radii of macro cells
and high subscriber count associated with them, generat-
ing measurements for full outage detection is not a primary
concern.

a) What makes outage detection in HetNets different than
homogeneous networks?: Cell outage detection in HetNets
differs compared to homogeneous networks due to the archi-
tectural difference between the two topologies. The low
computational ability of small cells, sparse network informa-
tion due to fewer connected users and proposed future 5G
solutions such as network densification means that outage
detection algorithms for HetNets must be designed separately.
The influences of sparse network data on outage detection
algorithms plays an extremely important role in the accuracy
of the algorithm. Less data can mean less accurate outage
detection and an increase in false positive rate.

This fact is demonstrated by Chernov et al. [68] who
compare the performance of several learning-based outage
detection algorithms using radio link and handover failure
metrics under different subscriber density levels. The results
demonstrate that as the number of subscribers per cell, and
consequently samples of performance metric report, starts to
decrease, the area under the curve of true positive rate plot
decreases exponentially. The authors also demonstrate that this
result is true regardless of the outage detection algorithm,
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QUALITATIVE COMPARISON OF PARTIAL OUTAGE DETECTION ALGORITHMS

which makes it a universal issue. Similar evidence is also
implicit in the results presented in [45], [62], [63], and [66].

b) Outage detection in sparse data environment: In a
sparse data environment such as a HetNet with control-data
separation architecture [69], Onireti et al. [70], [71] have
proposed to use Grey first order one variable prediction
model [72] to predict downlink received power of the cell
at locations where no such data is reported. Outage detec-
tion is triggered when sudden changes in user associations are
observed. The Grey prediction model predicts the downlink
received power of the cells if user associations had remained
the same. The predicted information is then compared to actual
downlink measurement reports to identify cells in outage. For
this purpose, the authors use k-NN and LOF algorithms with
k-NN demonstrating higher prediction accuracy just as it did
for the case of homogeneous networks [63]. The choice of
Grey prediction models in this study stems from the fact that
these models have been shown to have higher prediction accu-
racy in sparse data environments compared to other prediction
algorithms such as linear regression.

The algorithm proposed by Wang et al. [73] also refers to
a HetNet with control-data separation and outages in small
cells are detected through a comparison of predicted versus
actual measurements. Measurement prediction is made using
collaborative filtering where data collected during normal cir-
cumstances from highly correlated users is used to generate
predictions for normal cell performance. The predicted data
is then passed through sequential hypothesis testing which

measures the likelihood of a hypothesis being true and returns
the hypothesis with maximum likelihood to be true, i.e.,
whether a cell is in outage or not. The proposed algorithm is
accurate nearly 75% of the time even in very low user density
(1 user per 10000m2) and very high fading (8 dB).

Finally, Xue et al. [74] have proposed to use simulated radio
link failure data of normal and outage-hit cells to overcome
the lack of data generated per cell in an ultra-dense HetNet.
The authors propose to use kNN clustering to detect outages
in HetNets using simulated outages in the network to train the
algorithm.

B. Partial Outage Detection in Cellular Networks

Partial outage detection has historically been the domain
of network optimization experts since, unlike full outage,
KPI degradation generally does not generate network alarms.
Degradation of network performance can lead to poor user
QoE and may go unnoticed not only because no alarms are
generated, but also because unlike full outage, the effect of par-
tial outage may not manifest itself right away in the form of
customer complaints. Therefore, it is integral to include partial
outage detection in the autonomous Self-healing framework.
In this sub-section, we discuss the recently proposed solu-
tions for partial outage detection in mobile cellular networks,
while Table III presents a qualitative comparison of the stud-
ies included in this sub-section. Before presenting techniques
for partial outage detection, it is clarified that the terms partial
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outage and performance degradation are used interchangeably
in this sub-section.

1) Heuristic Solutions for Partial Outage Detection:
a) Heuristic solutions leveraging large-scale network

data for partial outage detection: Karatepe and Zeydan [75]
have proposed a heuristic rule based algorithm for network
misconfiguration detection due to its scalability and speed
of operation compared to learning-based approaches espe-
cially when dealing with large-scale network data. The authors
deploy a Hadoop [76] based data processing cluster to process
large amounts of customer call detail record data which con-
tains timestamps, handover attempts and successes, and all the
cells a user is associated with during the call. After data pro-
cessing, the information is forwarded to a heuristic algorithm
that matches user location with the associated cells and returns
any misconfigurations observed during the call. The authors
claim that the proposed algorithm can detect misconfigured
cells over 82% of the time.

Similarly, Shafiq et al. [77] have proposed to compare cell
profiles during routine network operation with performance
during heavy traffic situations to identify partial outages. The
authors use data from a large mobile cellular network opera-
tor to study the trend of several network performance metrics
including radio link setup failures, user counts, dropped calls,
blocked calls, data session count, data session duration and the
average time between consecutive data sessions of a user. The
resulting time series profiles of cells during routine operation is
compared with their operation during an unusual traffic activ-
ity period such as a sporting event. The authors demonstrate
that if the normal cell performance during routine operations
is known, it is possible to predict the level of cell performance
degradation during non-routine events with a high degree of
accuracy.

b) Comparative analysis-based heuristic solutions for
partial outage detection: In order to facilitate partial out-
age detection through comparative analysis of normal and
degraded cell behavior, Novaczki and Szilagyi [78] propose
construction of faultless network performance profiles by fit-
ting network performance metrics such as channel quality to
a β-distribution. The detection algorithm compares the α and
β parameters of real time cell performance distribution with
the faultless performance distribution parameters. In case the
real-time parameters differ from faultless profile parameters
by a threshold decided by experts, the cell is considered to be
suffering partial outage.

Comparison of time-series distribution has also been
explored by D’Alconzo et al. [79] who propose to construct
univariate probability distribution functions of performance
metrics including number of synchronization packets and num-
ber of distinct network addresses contacted. The baseline
distribution functions are constructed for different temporal
resolutions to avoid false detections. The approach in [79] dif-
fers from that in [78] since the proposal is to identify partial
outages using the Kullback-Leibler divergence [80] or relative
entropy of current behavior distribution from baseline behav-
ior distribution, while the behavior distribution modeling is
not limited to β-distributions.

Correlational comparison of time-series is an alternative
methodology of comparative analysis-based techniques for
partial outage detection. An example of correlational com-
parison has been presented by Asghar et al. [81] who have
proposed to utilize Pearson’s correlation factor to match cells
based on cell load estimated through the number of active
users associated with the cell. The algorithm states that if a
cell falls below an arbitrary correlation threshold with multiple
cells with which it was previously well correlated, it is con-
sidered to be degraded. The authors demonstrate that not
only is the proposed method effective for detecting slow par-
tial outages, it is also effective for full outage detection.
However, the performance of this algorithm is highly depen-
dent on correlated cells, i.e., if multiple correlated cells suffer
same degradation, it may go undetected. To avoid this pitfall,
Muñoz et al. [82] have proposed to correlate successful han-
dover count and call drop count time series of a cell with
a synthesized data series that represents partial outage and a
reference data series of the cell itself during normal behavior
as a preventive measure for false flags. High correlation with
synthesized data and low correlation with reference data sig-
nifies partial outage. The authors advocate use of time-series
correlations over cumulative data correlations since cumu-
lative correlation may hide any short-term degradations in
cell performance. However, time-series correlation requires
higher and faster computations especially if more performance
metrics are included in the comparison process.

c) Other heuristic solutions for partial outage
detection: In their work on partial outage detection,
Sanchez-Gonzalez et al. [83] propose a decision tree based
solution to identify partial outages in a mobile cellular
network. The proposed algorithm applies a set of expert-
defined rules separating normal and degraded behavior on the
uplink and downlink received power measurements, handover
failures, and radio link failures to categorize the performance
of each cell. If a cell fails said rules, it is considered to be
in partial outage and diagnostic functions are initiated. The
solution is validated using real-network data where it is able
to effectively identify the degraded cells.

Merging heuristic and learning-based methodologies,
Kumpulainen et al. [84] have proposed a hybrid solution
for partial outage detection. The proposed solution evalu-
ates channel quality measurements of a cell over one day
and categorizes the quality samples as good, medium and
bad based on a heuristic algorithm developed using expert
knowledge. Additionally, the solution utilizes fuzzy C-means
clustering [85] to generate cell clusters based on the com-
monality of their profiles in terms of channel quality data
distribution over a day [84, Fig. 7]. Based on the similarity of
channel quality measurement distribution of a cell over a day
with fuzzy clusters, the solution decides if it is degraded. The
authors have demonstrated that the proposed solution can not
only identify degraded cell performance but also the amount of
time it spends as degraded. However, scalability of the solution
requires further investigation since the proposed approach is
limited to evaluation of one performance metric over a period
of a whole day.
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2) Learning-Based Solutions for Partial Outage Detection:
One of the application areas of machine learning is the estima-
tion of network reliability explored by Sattiraju et al. [86]. The
authors capture long-term reliability data such as link avail-
ability and apply semi-Markov transition process to construct
renewal models for normal and degraded network link states.
Link reliability is defined as the amount of time network links
spend in normal states and two transition actions, i.e., failure
and repair exist in the network. The authors find that lower
reliability states are highly absorbing states, i.e., once a link
is sufficiently degraded, its recovery probability approaches
zero.

Ciocarlie et al. [87], have also explored the feasibility of
deploying time-series averaging based anomaly detection algo-
rithms over variable window lengths. However, unlike the
heuristic approaches presented in [78] and [79], the proposed
algorithm uses autoregressive integrated moving average to
compute predicted KPI values for a cell which are then com-
pared with an ensemble of models for different unspecified
KPIs. The authors propose to construct normal and anoma-
lous KPI models using different techniques including empirical
cumulative distribution function and SVM with radial basis
function kernel. The proposed solution is validated against
human experts using visualization tools. Results show that
while the proposed approach is able to accurately predict a
partial outage, the detection delay between outage occurring
and being detected was never less than five hours. Another
important concern raised by the authors is the exponential
training time of the machine learning algorithms which can
make the proposed methodology prohibitive in live networks.
The authors have provided further refinement of this approach
in [88] by including the utilization of the Kolmogorov-
Smirnov test [89] to identify the sliding window size for data
streams used to train the SVM models. Another key distinc-
tion of [88] over [87] is that the authors use seasonal trend
decomposition based on Loess [90] to identify and remove out-
liers from the original training data to create true performance
models.

A key commonality among [78], [79], [87], [88] is the use
of individual data streams for input to outage detection algo-
rithms. However, Barreto et al. [91] postulate that using single
variable data streams for anomaly detection, though simple,
is not always effective. Therefore, the authors have proposed
a joint neural network that takes univariate and multivariate
data containing channel quality measurements, traffic loads
and user throughputs from the network as inputs to gener-
ate global and local network performance profiles which are
used to detect anomalous cells via percentile-based confidence
intervals computed over global and local network profiles.
The authors demonstrate the efficacy of training a multivariate
neural algorithm by presenting a comparison with a single-
threshold neural algorithm using several neural network-based
algorithms including winner-take-all, frequency sensitive com-
petitive learning [92], Self Organizing Map (SOM) and neural
gas algorithm. Results show that the proposed multivariate
partial outage detection algorithm consistently outperforms
single-threshold method in terms of false positive alarm rate
by 0.6% to over 5.5%.

Frota et al. [93] have presented an extension to the work
in [91] where the authors combine the originally proposed
multivariate neural networks with Gaussian distribution based
SOM clustering algorithm to create a partial outage detection
algorithm. The authors use network core traffic statistics to
train the Gaussian distribution based SOM clustering algo-
rithm which is compared with multivariate heuristic anomaly
detection methods. It is demonstrated that the proposed tech-
nique can lower false partial outage detection rate by nearly
30% when trained over 10% of dataset compared to the algo-
rithm proposed in [94] for fault diagnosis in rotating machines.
However, the solution proposed in [93] builds on an underly-
ing assumption that network performance metrics such as user
count, throughput, noise levels and interference levels are nor-
mally distributed which may not hold always true in typical
real networks.

a) Partial outage detection using self-organizing maps:
Self-Organizing Maps are a popular neural networks based
clustering technique. SOMs work by projecting input vec-
tors of large size onto a 2-dimensional space using weights
obtained by training the underlying neural network. A num-
ber of studies have proposed SOM-based algorithms for partial
outage detection including [91], [93], [95]–[97].

As already discussed, Barreto et al. [91] and Frota et al. [93]
have used SOMs for comparison-based partial outage detec-
tion. On the other hand Lehtimäki and Raivio [95] harness
the capability of SOMs to arrange similar input vectors of
network measurements including call request blocking, traf-
fic channel availability, channel quality, voice call traffic, and
uplink/downlink signal strength together. The authors use this
arrangement to identify cells with partial outage through k-
means clustering algorithm. The proposed scheme is compared
with principal component analysis and independent component
analysis [98] to detect partial outages in control signaling and
traffic channel statistics of a real 2G network. Results show
that SOM and principal component analysis performed equally
well while outperforming independent component analysis.

Kumpulainen and Hätönen [96] also use SOM based cluster-
ing to detect localized partial outages compared to the general
global partial outage detection models. The proposed algo-
rithm first creates SOM which is then used to identify best
matching units for each node in the map and distance (quan-
tization error) between the two units is calculated. A cell
is considered in partial outage if its best matching unit is
also in outage and the distance between the two is less than
a pre-defined threshold. The authors compare the usage of
local partial outage detection model using SOM with Gaussian
Mixture Models and k-means clustering with results showing
that the local anomaly detection scheme not only detects all the
outages but also whenever the activity level of a cell changes.

Gómez-Andrades et al. [97] employ a similar approach
to [96] in their work where SOM is used to arrange the cells
based on signal strength, quality, call drop and handover failure
metrics, and then clustered using Ward’s hierarchical cluster-
ing [99]. The authors use the Davies-Bouldin index [100] and
the Kolmogorov-Smirnov test [101] to set the number of clus-
ters to be created in the SOM. The clusters are labeled as
normal or faulty based on expert knowledge. A comparison of
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the proposed methodology with a rule-based algorithm and a
Bayesian network classifier shows that the proposed approach
outperforms them by 31% and 12% respectively.

b) Partial outage detection using clustering techniques:
Apart from SOMs, other unsupervised clustering technique
such as k-means, density based and hierarchical clustering,
topic modeling and LOF clustering have also been explored
in literature for partial outage detection. Rezaei et al. [102]
have presented a comparison of several supervised partial
outage detection schemes in a 2G network. The study uses
input data including call blocking and drops, as well as sig-
nal quality measurements. Classification techniques explored
by the authors for partial outage detection include chi-squared
automatic interaction detection [103], quick unbiased efficient
statistical tree, Bayesian networks, SVM, and classification
and regression trees. The authors find that SVM has the best
detection rate among supervised learning techniques (94%)
but requires from longer training time while quick unbiased
efficient statistical tree has the shortest training time with
relatively high accuracy (93%).

Ciocarlie et al. [104] use topic modeling to detect partial
outages in a cellular network. The method resembles other
clustering techniques with the difference that it assigns a prob-
ability to the presence of commonality within the cluster of
cells. Once the clusters have been developed, the framework
uses domain knowledge to identify which cluster represents
anomalous behavior. The approach is tested on real-network
data with verification of results performed using visual analy-
sis of data by experts. Alternatively, Dandan et al. [105] have
used kernel-based LOF anomaly detection which is simply
LOF with kernel based distance calculation. The authors pro-
pose using kernel-based LOF to identify cells in partial outage
by associating a degree of anomaly to each cell in a den-
sity map for LOF based on kernel Gaussian distance (kGD).
Normal cells are characterized by having a kGD of 1 and any
cells with kGD above are outliers. The authors also suggest
that kernel-based LOF can better deal with non-uniform dis-
tributions of cells in real datasets compared to typical LOF
algorithm. The proposed method has a 91% success rate in
detecting outages compared to 70% for normal LOF.

C. Summary and Insights

Outage detection is one of the most labor intensive process
in a mobile cellular network. Researchers have devoted a lot
of attention to autonomous full and partial outage detection
solutions. Majority of these solutions attempt to detect outages
based on coverage metrics such as received signal strength. For
outage detection in future 5G networks with millimeter wave
cell deployment, researchers will need to consider additional
metrics. This is because millimeter wave cells have a very high
pathloss leading to natural loss of coverage even at a distance
of a few hundred meters [106]. A challenge for future studies
is to come up with solutions that can detect outages in spite
of the coverage limitations of millimeter wave cells.

A common theme among the studies for full and par-
tial outage detection is the growing use of machine learning
techniques in general, and unsupervised clustering techniques

in particular, for outage detection. This reduces the chances
of outages due to unconventional reasons, such as weather
anomalies, to be missed. This is not the case for heuris-
tic and supervised machine learning based solutions since
they are only trained to look for evidence of outage based
on human expert knowledge. This does not mean that unsu-
pervised learning solutions for outage detection can become
industry standard as is. Some of the major issues concerning
unsupervised learning solutions include:

1 Machine learning techniques in general are prone to
errors due to noise in the recorded dataset, as demon-
strated in [45], [62], [63], and [66]. This means that
unsupervised learning solutions deployed for outage
detection in areas with high shadowing and multipaths,
such as metro hubs, can result in higher false negatives.
Future solutions for outage detection must address this
issue before they can become practically viable.

2 Majority of techniques for outage detection discussed
above only consider spatial data for outage detection
purposes. This means that the KPI data used for outage
detection is gathered over a set of spatial points repre-
senting user locations for one time instance. Therefore,
outages detected by these solutions are instantaneous.
This raises the issue of outages that are extremely short-
lived, have little impact on subscriber QoE, and may be
gone by the time they can be compensated. To address
this issue, future solutions for outage detection must
consider the temporal dimension as well as the spatial
dimension of user reported data to differentiate between
temporary and long-term outages.

3 Most of the approaches for outage detection reviewed
above require a secondary analysis by human expert to
confirm the existence of the outage which can add some
delay before outage compensation is triggered. This can
be an issue in 5G networks where low latency and high
QoE requirements mean that the outages would have to
be detected and compensated as quickly as possible.

In addition to addressing the above issues, future studies for
outage detection must also incorporate the effects of millime-
ter wave propagation and capacity enhancement solutions such
as massive MIMO. Additionally, detecting partial outages in
massive MIMO cells such as failure of some beams will also
need to be addressed. Based on the review of existing litera-
ture, there are no current studies that expressly include either
of these two features which makes them prime candidates for
future research in outage detection.

V. OUTAGE DIAGNOSIS IN CELLULAR

MOBILE NETWORKS

Once a network outage (full or partial) is detected, the next
phase is to diagnose the underlying cause of the outage. In
this section, we analyze the literature on Outage Diagnosis.
Some full outages can trigger fault alarms, thus eliminating
the need for full outage detection in those particular cases.
However, the exact cause of the failure still needs to be
diagnosed. Conversely, the key difficulty in diagnosis with
partial outage is the lack of fault alarms associated with the
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TABLE IV
QUALITATIVE COMPARISON OF OUTAGE DIAGNOSIS ALGORITHMS

anomalies which makes their diagnosis more difficult, thus
requiring sophisticated diagnostic techniques. Table IV pro-
vides the qualitative comparison of studies describing full and
partial outage diagnosis techniques.

A. Diagnosis of Full Outages in Cellular Networks

A starting point towards full outage diagnosis is building the
knowledge-base of possible faults. A quite extensive descrip-
tion of standard faults in cellular networks has been presented
in [25] which are applicable to 2G, 3G and 4G networks.
The standard documentation also provides alarm descriptions
for faults associated with hardware failure, software failure,
functionality failure or any other faults that cause the network
node to stop performing its routine operations. However, out-
age diagnostics have remained in the domain of human experts
who use their knowledge to identify outage causes. While this
method is effective, it cannot remain as the method of choice
going forward towards ultra-dense networks.

To this end, some studies have proposed techniques
combining expert knowledge with mobile cellular network
data to create autonomous outage diagnosis algorithms.
One such approach has been demonstrated by Szilágyi and
Novaczki [47] which utilizes expert knowledge to create tar-
gets for network performance such as channel quality, dropped
calls and handover failures. The solution uses weighted sums
of the difference of actual KPI value to the target value to
calculate a diagnostic score. The algorithm then uses expert
knowledge to associate a range of scores with different fault
causes to complete the diagnosis process. The proposed tech-
nique is validated using real data, with results showing that
the algorithm was able to diagnose each outage correctly.

1) Learning-Based Solutions for Full Outage Diagnosis:
Solutions for outage diagnosis using stationary KPI targets
derived from expert knowledge can become obsolete quickly in
the face of changing network dynamics. Khanafer et al. [107]
argue this point and propose an alternate learning-based solu-
tion using Naïve Bayes Classifier (NBC) to predict possible
causes of hardware faults and KPI degradations in the network
given the symptoms (failures). The algorithm uses discretized
value ranges for various KPIs including blocked calls, dropped
calls, connection request failures, and HO failures to indicate
normal and faulty performance states. The authors compare
two different techniques of KPI value discretization namely
percentile-based discretization and entropy minimization dis-
cretization. Results show that outage diagnoses are over 10%
more accurate when entropy minimization discretization is
used compared to percentile-based discretization.

Barco et al. [108] compare the performance of a NBC
for outage diagnosis with a modified NBC which assumes
the independence of causal influence [109]. The two meth-
ods are compared using data from a live network containing
faults such as call drops, handover failures and call blocking
with results showing modified NBC to be more efficient in
terms of simplicity with the same level of accuracy as reg-
ular NBC. However, in order for modified NBC to diagnose
outages accurately, it needs knowledge of prior KPI distri-
butions in the event of an outage. Barco et al. [110] have
discussed the process of developing this knowledge using a
knowledge acquisition tool. The tool combines past diagnoses
performed by experts with fault data from the mobile cel-
lular network. The tool takes faults such as high network
congestion or high call drops, possible causes such as high
interference, observed performance metrics at the time of
the fault such as handovers due to high interference, and
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cell parameter settings. Combining this information, the tool
outputs the prior probabilities of different diagnoses.

Unlike other techniques for full outage diagnosis,
Rezaei et al. [102] propose to use unsupervised cluster-
ing techniques for fault diagnosis and present a com-
parison of several such techniques including expectation
minimization, density-based spatial clustering of applications
with noise [111], agglomerative hierarchical clustering [112],
X-means and k-means clustering. The authors use cluster-
ing algorithms to split cells based on their call drops and
blocking values. Diagnosis is done by comparing cells in clus-
ters to faulty cells with known diagnosis. Validation is done
using expert knowledge to confirm the result of fault diag-
nosis through clustering. The clustering results are verified
using the Silhouette Coefficient [113] and show that expecta-
tion minimization is the most successful technique in terms of
data clustering with clearest cluster divisions between different
sets of faulty cells.

B. Partial Outage Diagnosis in Cellular Networks

Diagnostic techniques are primarily needed in mobile cel-
lular network for performance degradations scenarios, i.e.,
partial outages which generally do not generate any alarms.
The operators can define thresholds for KPI values to gener-
ate customized alarms; however, apart from being useful only
for KPI degradation detection, this technique cannot help in
diagnosis or root cause analysis. For this reason, partial outage
diagnosis carries great importance in autonomous Self-healing
solutions for SON.

Shafiq et al. [77] have presented an analysis of real-time
measurements from some cells of a large mobile cellu-
lar network before, during and after two abnormally high
traffic events. The results have been used to present heuris-
tic detection and diagnosis schemes for network congestion
and dropped calls during such events along with sugges-
tions on how to rectify these problems. The authors analyze
network performance measurement for call connections, link
performance and data service performances, and suggest that
major issues in terms of call drops and congestion occur
when users access the network without coordination. While
this would not pose problems during routine network opera-
tions since the network is designed to handle such traffic, it
becomes an issue during major events or gatherings if addi-
tional capacity is not deployed. The analysis presented in the
paper solely relies on expert knowledge to derive diagnostic
inferences from the real data.

1) Partial Outage Diagnosis Using Learning-Based
Techniques: Other than heuristic techniques, learning-based
techniques have also been exploited in [97], [104], and
[114]–[116] for KPI degradation diagnosis.

a) Supervised learning techniques for partial outage
diagnosis: Ciocarlie et al. [104] propose to use Markov
Logic Networks and Principal Component Analysis to diag-
nose weather-related and parameter misconfiguration-related
partial outages from real network data. The proposed tech-
nique generates clusters of degraded cells using Principal
Component Analysis which are then passed through a Markov

Logic Network for diagnosis. The Markov Logic Network gen-
erates a sequence of events that would lead to a degradation
in call drop rate, throughput or handover failures, thus leading
to the diagnosis. Weights for each sequence of events in the
Markov Logic Network leading to a diagnosis are initialized
using expert knowledge and updated with each successful and
unsuccessful diagnosis. The diagnostic results of the proposed
approach have been validated against expert diagnoses. The
proposed approach also relies heavily on expert knowledge
to generate the event sequences used in the Markov Logic
Networks.

Barco et al. [114] present a comparison of the impact of
continuous versus discretized data models for auto-diagnostic
systems in cellular network using Bayesian network classifier.
The authors use β-distributions to construct continuous models
from KPI data streams, and selective entropy minimization dis-
cretization [117] to construct discrete KPI models. The study
uses dropped call rate, blocked call rate, handover blocking,
throughput, and active neighbor set update rate KPIs to gen-
erate probability of degradation in the network given a set
of symptomatic KPI distributions. The results show that con-
tinuous models exhibit nearly 10% higher diagnosis accuracy
when the training set size is sufficiently large (∼2000 exam-
ples) while the discrete models are more accurate (∼20%)
when the training data is sparse (∼50 examples).

The results from [114] have been used by Barco et al. [115]
to propose a hybrid KPI modeling methodology called
Smoothed Bayesian Networks which can decrease the sen-
sitivity of diagnosis accuracy to imprecision in the model
parameters. The posterior probabilities of the causes follow a
smoother transition near the boundaries between states given
their related symptoms in Smoothed Bayesian Networks than
in traditional Bayesian networks. The authors compare the
accuracy of diagnoses for both Smoothed Bayesian Networks
and Discrete Bayesian Networks on real network data for diag-
nosis of call drop rate. The results suggest that Smoothed
Bayesian Networks perform better by almost 10% when there
was a certain degree of inaccuracy in the model brought about
by sparseness in data. However, Discrete Bayesian Networks
perform better on a larger dataset resulting in a more accurate
KPI model.

b) Unsupervised learning based solutions for partial out-
age diagnosis: SOMs have been used frequently not only
to detect KPI degradations [93], [95]–[97], but also to diag-
nose them [97], [116]. Gómez-Andrades et al. [97] have used
SOM based clustering cell in 4G networks based on call
drop rate, channel interference, handover failures, received
signal strength, channel quality, and throughput to diagnose
the possible cause of performance degradations in the eNBs.
The clustering algorithm arranges cells based on their degree
of association with other degraded cells by finding the best
matching unit for each cell. If a cell is experiencing KPI
degradations, it will be clustered with pre-existing degraded
cells with known diagnosis. The authors demonstrate that the
proposed scheme can outperform rule-based algorithms and
Bayesian Network Classifiers by ∼32% and ∼12% respec-
tively but takes longer to train compared to the other two
techniques. Laiho et al. [116] have proposed a similar solution
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to diagnose degradations in channel quality and frame error
rate in 3G networks with the exception that the cells are
clustered using k-means clustering. Cells are diagnosed by
taking the diagnosis of the nearest known degraded cell and
the results are validated using real-network data and com-
paring expert diagnoses with the diagnoses generated by the
technique.

C. Summary and Insights

Outage diagnosis is a relatively under-explored aspect of
Self-healing in mobile cellular networks compared to outage
detection and compensation techniques. Part of the reason
for this are the standardized fault and alarm codes that are
automatically generated in the event of a full outage due
to hardware/software failure. However, no such standardized
diagnostics exist for partial outages. This is because the same
partial outage may be caused by two different sets of cir-
cumstances. For this reason, majority of studies on outage
diagnosis use supervised learning solutions such as Bayesian
networks and Markov logic networks which can associate
a probability with each known cause leading to an outage.
However, the use of such solutions can be challenging in prac-
tical networks since training them would require constructing
a database of every root cause resulting in an outage.

To address this issue, future studies on outage diagnosis
should focus on how this database of root causes can be cre-
ated without creating artificial outages. In addition, causes of
full and partial outages in future 5G networks with millimeter
wave cells, massive MIMO and ultra-dense cell deployment
must also be explored since they are an uncharted territory as
yet.

VI. OUTAGE COMPENSATION IN CELLULAR

MOBILE NETWORKS

Outage compensation forms the core element of the Self-
healing framework; therefore, it is no surprise that, among
the three components of Self-healing, outage compensation
has received the most attention from the research community.
Compensation actions and algorithms are designed specifically
to provide temporary service to users in case of a full out-
age or partial outage since both events are not immediately
recoverable. While detection and diagnosis of full outage and

partial outage in a mobile cellular network require different
methodologies, compensatory actions for both events involve
similar techniques. The majority of studies on compensation
algorithms are presented as a solution for full outage but lend
themselves seamlessly to compensation for partial outages.

The key principle of outage compensation is to leverage
resources from neighboring cells of outage-affected cells to
provide temporary services in affected area. These resources
include cell bandwidth and user associations which can be
modified using primary parameters such as cell/user equip-
ment transmit powers, and antenna parameters as well as
secondary parameters such as neighbor lists and cell selection
parameters [40]. In the following subsections, compensation
algorithms are presented based on the optimization objective
with description of their methodology of optimization along
with parameters of choice and other taxonomically significant
insights.

A. Coverage Area Optimization for Outage Compensation

One of the key consequences of network outages and KPI
degradations is the loss of network coverage near effected
network entity. Several studies [66], [71], [118]–[122] have
presented outage compensation algorithms that focus on cov-
erage optimization. A list of these studies along with their
proposed techniques is presented in Table V.

1) Choosing the Right Neighboring Cells, Optimization
Parameters, and Recovery Action: Choice of neighboring
cells, optimization parameters, and recovery action plays an
important role in the effectiveness of an outage compensation
solution and has been investigated in [118], [119], and [120]
respectively. The Self-healing framework proposed by
Asghar et al. [118] defines an outage compensation algo-
rithm that uses received power measurements from users of
outage-affected cell to create coverage polygons for neighbor-
ing cells. The algorithm then iterates through different antenna
configurations of key neighboring cells with potential cover-
age overlap to outage cell until coverage constraints of all
users are met. Additionally, the algorithm monitors downlink
throughputs and radio link failures of the neighboring cells
to benchmark network recovery. A demonstration of the algo-
rithm by the authors on real network outages shows it can
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effectively compensate for outages within 2 hours of their
occurrence.

The outage compensation framework proposed by
Amirijoo et al. [119] compares compensation potential of
different control parameters suggested in [40], i.e., refer-
ence signal power, uplink target received power level P0
and antenna tilt in mitigating outage-induced performance
degradations. An iterative algorithm is used to update
the parameters of neighboring cells and their results are
benchmarked. Results in terms of cell coverage and user
throughput indicate that uplink target received power level
P0 and antenna tilt are the most effective parameters for
improving coverage, while P0 is most effective for improving
throughput.

Frenzel et al. [120] discuss choice of optimal recover action
based on three inputs, i.e., the probability of effectiveness of
a solution which depends on the outage cause, the prefer-
ence of the network operator for a recovery action, and the
preference of the network operator for a degradation reso-
lution. The authors propose a weighted-sum function which
returns the cost of selecting a solution, action and resolution
tuple. The proposed framework is flexible to changing network
technology as more tuples can be added for future networks;
however, the determination of probabilities and preferences
requires manual input by experts.

2) Non-Convex Coverage Optimization Techniques for
Outage Compensation: Several studies have explored the use
of non-convex optimization methods for outage compensation
based on the analysis that in a large network with a diverse
set of optimization parameters, outage compensation can be a
NP-hard non-convex problem. Conversion of the outage com-
pensation problem into a convex problem requires too many
generalizations and assumptions which can make the result
unsuitable for practical implementation. Jiang et al. [121] and
Wenjing et al. [122] base their solutions on this premise and
use non-convex optimization techniques to solve the problem
of coverage optimization.

Jiang et al. [121] have proposed a cost function
minimization approach which uses weighted sum of down-
link channel quality and received signal strength. The authors
state that the problem is a large scale non-convex optimization
problem. Outage compensation is carried out by calculating the
optimal uplink target received power P0 using a non-convex
optimization technique called immune algorithm [123] for cost
function maximization. The authors show that the immune
algorithm improves both coverage and channel quality after
optimization and can converge in a very short time period. The
results, compared against two other techniques [124], [125],
show that the proposed methodology can significantly improve
coverage post-optimization by 10% without significantly sac-
rificing cell edge throughput. However, it is observed that the
immune algorithm is highly sensitive to initial parameters, i.e.,
it may not be able to escape the infeasible solution set if initial
parameters are not set correctly.

Similarly, Wenjing et al. [122] propose that the
minimization of coverage holes and pilot pollution using
downlink pilot powers of neighboring cells for outage
compensation is also a non-convex problem. In this study, the

authors propose to use a non-convex optimization technique
called particle swarm algorithm [126]. Results on the analysis
of the algorithm indicate that it is highly efficient in terms
of execution time while also recovering over 98% of the
coverage area in terms of signal strength without significantly
degrading link quality. However, like immune algorithm,
the particle swarm algorithm is also highly dependent on
initialization parameters for convergence.

3) Learning-Based Coverage Optimization Solutions for
Outage Compensation: Examples of learning-based algo-
rithms for outage detection and diagnosis covered in the
previous sections mostly employed classification and cluster-
ing techniques. However, reinforcement learning [37] repre-
sents the most effective learning-based solution for outage
compensation algorithms, primarily due to its ability to iden-
tify maximum reward strategies over a learning period. One
reinforcement learning-based solution for outage compensa-
tion has been proposed by Zoha et al. [66] within a complete
learning-based Self-healing framework. The outage compen-
sation component of the framework is built upon fuzzy-logic
based reinforcement learning which adjusts antenna tilts and
cell transmit powers to achieve the desirable compensated
performance in terms of cell coverage. The compensation
algorithm makes incremental or decremental step changes in
optimization parameters after an outage using exploration of
new rewards or exploitation of past rewards. The resulting
network state from the reinforcement learning database is
interpreted through the fuzzy-logic regulator as better or worse
than the previous state which then dictates the next step of
the reinforcement learning algorithm. The authors demonstrate
that the proposed solution can improve post-outage cell edge
coverage by 5 dB while also helping to regain mean data rate
to pre-outage levels.

A similar approach to [66] has been presented by
Onireti et al. [71] for heterogeneous networks with the differ-
ence that the fuzzy logic component has been replaced with
an actor-critic module for enabling reinforcement learning.
The actor-critic module executes an exploratory or exploita-
tive actions such as changing antenna tilt or transmit power
of a neighboring cell based on probability of reward learned
over time. The critic then evaluates the reward associated with
the action taken and updates past rewards and probabilities.
The solution is compared against the one presented in [66]
with results showing it improves cell coverage and channel
quality, particularly for cell edge users, and brings them closer
to pre-outage levels.

B. SINR Optimization for Outage Compensation

A secondary consequence of outage compensation can
be the degradation of SINR of existing users in neighbor-
ing cells due to parameter reconfiguration. Therefore, some
studies [124], [127]–[130] use SINR as the objective to be
optimized while including the existing and outage-affected
users into the optimization process. This allows them to avoid
or minimize the degradation of SINR in areas not affected by
outage. Table VI lists a qualitative comparison of the studies
targeting SINR optimization for outage compensation.
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1) Heuristic SINR Optimization Solutions for Outage
Compensation: Wang et al. [127] present a distributed heuris-
tic outage compensation algorithm for SINR optimization in
HetNets. The proposed algorithm minimizes the number of
neighboring cells to be reconfigured to achieve desired post-
outage SINR. This is done by calculating an inner group
of femtocells that can recover the outage-affected femtocell
through reconfiguration of transmit powers, and by creating a
second outer group of femtocells beyond which no further
outage compensation actions can be propagated to prevent
the effects of reconfigurations from rippling outwards. The
authors demonstrate that the proposed technique requires fewer
neighboring cells for SINR optimization compared to other
solutions such as [131] while also reducing the number of
cells with negative differential SINR compared to pre-outage
values. However, the authors also show that as the density of
the mobile cellular network increases, the grouping algorithms
takes longer to converge.

While the solution in [127] endeavors to find the optimal
set of compensating neighbors, the solution put forth by
Amirijoo et al. [124] focuses on optimization parameters of the
neighboring cells for outage compensation. The algorithm iter-
ates through values of uplink target received power P0 and the
antenna tilts of neighboring cells in a homogeneous network.
The optimal set is obtained when cell coverage can no longer
be improved without affecting SINR. Results indicate that the
algorithm can regain pre-outage SINR and coverage values in
low network load scenario. Moreover, the compensation poten-
tial of the solution in terms of SINR improves as the network
load decreases while quality degradation is most visible for
high and medium loads.

2) Convex SINR Optimization Solution for Outage
Compensation: Lee et al. [132] present an outage compen-
sation solution using the concept of collaborative resource
allocation strategy. The solution is based on reallocation
of dedicated bandwidth called Healing Channels (HCs) to
provide physical channel resources to users affected by an
outage. The concept has been used in associated studies for
outage compensation, such as the one by Lee et al. [128]
who use a fairness-aware collaborative resource allocation
algorithm with the objective of maximizing the sum of
logarithmic user rates. The maximization process guarantees
user fairness in terms of resource allocation while maximizing
user throughput which is directly related to bandwidth and
user SINR. Use of log-rate removes the possibility of outage
facing users not being allocated any resources and ensures

that the rate maximization algorithm treats all users fairly.
The proposed scheme is compared with a number of com-
peting resource allocation solutions for outage compensation
including regular collaborative resource allocation [128], non-
cooperative resource allocation, and the outage compensation
solution for wireless sensor networks proposed in [133].
Results show that even though regular collaborative resource
allocation offers nearly 10% more mean throughput gains,
those gains are overshadowed by large disparity between
maximum and minimum throughput levels. On the other hand
the fairness aware-collaborative resource allocation algorithm
offers a fairer throughput distribution between users.

3) Learning-Based SINR Optimization Algorithms
for Outage Compensation: Saeed et al. [129], and
Moysen and Giupponi [130] employ reinforcement learning
techniques to optimize SINR for outage compensation.
Saeed et al. [129] propose a fuzzy Q-learning algorithm for
compensation of SINR loss due to outage. The algorithm
configures transmit power and antenna tilts of neighboring
cells iteratively using fuzzy logic control and records the
rewards in terms of change in downlink SINR of affected
users. The rewards are used by the reinforcement learning
algorithm for learning future actions which might lead to
better outage compensation in terms of overall DL SINR.
Simulation results indicate around 40% of effected users are
restored to their original SINR under low load conditions.
Similarly, Moysen and Giupponi [130] propose reinforcement
learning technique for adjusting neighbor cell coverage
using antenna tilt and the downlink transmission power. The
approach differs from the one in [129] such that the actions
and rewards are calculated using the actor-critic approach
discussed previously in [71] for coverage optimization instead
of fuzzy logic. To make the algorithm in [130] work, each
cell reserves a certain amount of frequency bandwidth for
users effected by the outage. Neighboring cells are informed
of this bandwidth through the inter-cell interface so that a dis-
tributed and cooperative outage compensation solution can be
achieved. The algorithm modifies cell power and antenna tilts
in fixed step sizes to exploit the reward of each change which
is based on the SINR of users effected by outage. Simulation
results indicate that compensation delay is around 500 ms
and the approach can compensate 98% of outage users.

One key observation regarding reinforcement learning
solutions is that solutions such as the ones presented
in [66], [71], [129], and [131] require considerable number
of training examples, or outages, before their actions can
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become effective. This can make effective deployment of such
solutions a challenge for mobile cellular network operators.

C. Cell Capacity Optimization for Outage Compensation

Like degradation in SINR, cell overloading is another con-
sequence of network outages resulting from re-association
of affected users to neighboring cells. Moreover, compen-
satory actions to achieve another objective, such as coverage
optimization, can also result in overloading of neighboring
cells. This can lead to users being blocked and service requests
being discarded, which affects subscriber QoE. To circumvent
these problems, some studies [131], [132], [134]–[138] have
focused on outage compensation solutions that focus on opti-
mizing user associations so that the load is fairly distributed
among neighboring cells. Table VII presents a qualitative
comparison of these studies.

1) Convex Capacity Optimization Solution for Outage
Compensation: As mentioned previously, Lee et al. [132] have
proposed an outage compensation solution for HetNets based
on collaborative resource allocation. The authors state that
users in faulty femtocells cannot be served reliably by the
macro cells due to power imbalance between macro cell and
small cells, and cell edge performance limitations of macro
cells. Therefore, only normal small cells can support users in a
faulty small cell. To this end, the reserved HCs of healthy small
cells are allocated cooperatively to users of the outage-affected
cell. The proposed scheme finds adaptable set of HCs, sub-
channels and power allocation to maximize network capacity
through convex optimization implemented via an iterative gra-
dient descent algorithm. The solution is quick and improves
the total capacity utilization of neighboring cells by nearly
30% while also ensuring fairness in terms of user throughputs.

The collaborative resource allocation solution [132] is fur-
ther extended by Lee et al. [134] to include collaborative
beamforming strategy along with HC allocation for outage
compensation. The proposed cooperative beamforming strat-
egy can be performed without power cooperation between
nodes, and is also the optimal transmission strategy under
individual power constraints. The proposed algorithm per-
forms HC selection through convex optimization based on
maximizing system capacity in outage scenario, and then car-
ries out sub-channel allocation and power allocation based
on an iterative algorithm. The proposed solution is compared
against several resource allocation schemes including regular
collaborative resource allocation, equal power allocation [133]
and multi-user iterative water filling [139] schemes, with the

results showing that for 10 HCs, the proposed algorithm
improves the average cell capacity by 5% and user fairness
by 10%.

2) Non-Convex Capacity Optimization Solutions for Outage
Compensation: As already discussed, a diverse set of problem
constraints and parameters can result in the outage compensa-
tion problem becoming non-convex. To solve these problems
researchers must resort to non-convex optimization methods.
One such solution presented by Xia et al. [135] uses genetic
algorithm [32] to solve the capacity optimization problem for
outage compensation. The problem objective is to minimize
the sum of squared difference between capacity utilization of
a compensated cell and average network capacity utilization in
a homogeneous network. In this study, the genetic algorithm
searches over the user association sets including users affected
by the outage to find the set that minimizes the capacity
utilization objective. Results show that the proposed method-
ology can improve average resource utilization by at least 5%
compared to non-optimized cell capacity utilization. The key
advantage of using genetic algorithms is their immunity to ini-
tialization point and their ability to get out of the non-feasible
zones in the solution set. However, as the size of a system
grows larger, the genetic algorithm takes longer to converge.

Rohde and Wietfeld [136] propose to use probabilistic
network performance estimation to compensate network out-
ages through ad-hoc deployment of unmanned aerial vehicles
(UAVs) mounted relays. Aerial relays can help to exploit
unused local capacities of nearby macro cells which can-
not be used optimally for connectivity by users or ground
based relays when no line of sight link is available. The
proposed algorithm builds probabilistic estimation models of
interference and throughputs through iterative modification of
relay positions to achieve stable cell loads. The authors have
compared results using 1 to 6 aerial relays at different dis-
tances from outage cell under stationary user locations with
results showing that as the number of relays increases and
distance from outage cell center decreases, average resource
utilization on neighboring cells decreases.

3) Learning-Based Capacity Optimization Solutions for
Outage Compensation: Aráuz and McClure [137] utilize prob-
abilistic graphic models derived from Bayesian Networks to
detect sleeping cells in HetNets and compensate for their out-
age. Probabilistic graphic models are used to predict user
distribution in the outage-affected cell as well. It also allows
the categorization of incoming load based on the user distribu-
tion and the active cell load without the need to store lengthy
baseline data. Each neighboring cell of the faulty cell arranges
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the predicted load probabilities in increasing order and decides
the expansion of its coverage. The authors report that the prob-
abilistic graphic model can successfully predict the expected
user distribution and incoming loads for majority of the cases
which results in 91.1% of the cases in total coverage recovery
with just two sectors cooperating by expanding their footprint.
Total recovery is reported for 96% of the cases with three sec-
tors cooperating. The key advantage of proposed approach is
that instead of using all neighboring sites or sectors it can
yield substantial recovery using only two or three neighboring
sectors.

In another study based on supervised learning,
Tiwana et al. [131] use statistical learning with con-
strained optimization for outage compensation. The study
utilizes logistic regression to extract the functional relation-
ships between the noisy KPIs including file transfer time,
block call rate and drop call rate, and cell resource utilization.
These relationships are then processed by an optimization
engine to calculate the optimized resource allocation which
improves the KPIs of a degraded cell. The process is iterative
and converges to the optimum value in few iterations, which
makes it suitable for large mobile cellular networks. Results
using Monte Carlo simulations indicate 44% improvement
in blocked call rate and ∼26% improvement in file transfer
time.

The algorithm in [131] has been extended by Tiwana [138]
to utilize α-fair packet scheduling for radio resource alloca-
tion at neighboring cells for outage compensation. At α = 0,
the scheduler acts as max-throughput scheduler, whereas at
α = 1, the scheduler becomes proportional fair. Changing the
value of α allows compromise between higher capacity (higher
throughput for its mobile users) and greater coverage (serving
higher number of users concurrently). The results indicate that
for α = 1.3, the average blocked call rate decreases by 61%,
which is a gain of 17% compared to the scheme in [131],
while average bit rate falls by 4%. However, for α = 0.8, the
average bit rate increases by 3% while blocked call rate falls
by 5%.

D. Spectral Efficiency Optimization for Outage
Compensation

Spectral efficiency is the ratio of data rate to the used band-
width and depends on factors which include user distribution,
interference, neighboring cell load, geographical SINR dis-
tribution, topology, spectrum reuse, modulation schemes, and
the number of data links between the communicating nodes,

among others. Therefore, spectral efficiency is heavily depen-
dent on the outage compensation actions and has been used
as the optimization objective in several studies [140]–[142]
which are presented below while their qualitative comparison
is given in Table VIII.

The physical implementation of HCs, described in [132],
has been discussed by Lee et al. [140] for outage compensa-
tion. The study assumes that indoor base stations or small cells
can support scalable bandwidths which can be used to com-
pensate users affected by outage in neighboring small cells.
Furthermore, it is shown that the maximum spectral efficiency
in the event of an outage is achieved when the minimum
number of HCs, predetermined by an indoor central unit,
is assigned to support users covered by the outage-affected
cell. The proposed technique achieves the largest average
cell capacity and user fairness in terms of spectral efficiency
when compensating cells can be selected by affected users
opportunistically for each HC, which is called the multi-cell
diversity effect.

Fan and Tian [141] employ game theory to address out-
age compensation in HetNets. The authors propose a resource
allocation scheme in which data transmission can be done
cooperatively by the cells. Similar to the approach in [134],
channel allocation and cooperation is done at sub-channel
level, i.e., by splitting the bandwidth of healthy cells for the
purpose of compensating users affected by the outage. The
problem is formulated as a rate maximization coalition game
with weights for individual users and is solved using equal
power allocation strategy. Once coalitions are formed between
users and compensating cells, the authors use Lagrangian
multipliers to solve for the optimal power set with the objec-
tive function of maximizing rate over a coalition. The approach
requires users to go through multiple iterations of cell coali-
tions until the Pareto-optimal coalition is found which may
require significant time expense.

Finally, He et al. [142] present a multi-objective
optimization based approach for outage compensation in
Cloud-RAN architecture. The optimization objective is the
weighted sum of spectral efficiency of edge users of
outage-affected remote radio units, and average spectral
efficiency of users in outage and compensating remote
radio units. Optimization parameters, i.e., antenna tilt of
adjacent remote radio units, are adjusted to expand the
coverage in an online-iterative manner. The algorithm is
designed to maximize spectral efficiency of compensating
cells and users affected by the outage but does not guaran-
tee global maximization. Results show that the solution can
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recover spectral efficiency of users affected by an outage
by 90%.

E. Summary and Insights

A review of techniques for outage compensation in Self-
healing mobile cellular networks suggests four basic metrics
are targeted in the event of an outage. These are: 1) cov-
erage area, 2) SINR, 3) cell capacity/load, and 4) spectral
efficiency. The optimization of these metrics is suitable for
legacy mobile cellular networks. However, future 5G cellu-
lar networks will be more complex and QoE-focused. This
means that outage compensation solutions of the future will
have to focus on more than just these basic metrics. Some
examples of potential metrics which will be important in 5G
cellular networks include energy efficiency, service latency,
and throughput fluctuations [38].

Ensuring service latency by itself will be a major challenge
for network operators in 5G mobile cellular networks due to
the complex nature of these networks. A review of outage
compensation studies suggests that the most popular tech-
niques for outage compensation are convex and non-convex
optimization. Both of these techniques are computationally
tedious and require far more time than would be acceptable
in a 5G network. Furthermore, as these networks become
denser, and the number of tunable parameters increases, the
optimization process will get slower and more complex. Thus,
one of the foremost challenges for future outage compensation
solutions will be to reduce the time it takes for an optimization
algorithm to reach its solution. Exploring trade-offs between
different metrics for outage compensation in 5G networks will
also be an interesting future area of study.

Another important research area in terms of outage com-
pensation solutions is their integration into the larger SON
framework. The SON framework includes technique for Self-
optimization which oftentimes use the same parameters as
outage compensation techniques. For example, coverage and
capacity optimization solutions use transmit powers, antenna
tilts and beamforming parameters which are also key for out-
age compensation techniques, as evidenced by the review of
studies above. To avoid this issue, network operators will need
to incorporate a Self-coordination entity to resolve such con-
flicts. Additionally, coordination will be important to avoid
the triggering of Self-optimization as a result of some outage
compensation action. For example, changing the azimuth of a
cell to provide coverage to subscribers of a cell affected by a
full outage might trigger coverage and capacity optimization
in a neighboring cell. This could, in turn, trigger a cascade
of changes in neighboring cells. While some studies have
proposed the use of exclusion zones to reduce the impact
of outage compensation on other cells [127], this area needs
further research.

Finally, like existing outage detection and outage diag-
nosis techniques, outage compensation techniques do not
incorporate technologies such as massive MIMO and mil-
limeter spectrum utilization. To enable Self-healing in 5G
networks, more solutions must be explored which focus on
these technologies, making this a key area of research.

VII. CHALLENGES AND FUTURE PROSPECTS IN

SELF-HEALING FOR 5G AND BEYOND

In order for future 5G mobile cellular networks to achieve
the desired gains laid out by the research and standardization
community [38], SON solutions must play a far greater role
than ever before [12]. This means that future mobile cellular
networks must be intelligent, proactive, knowledge-rich and
interactive at the same time. To achieve this goal, researchers
must develop solutions which enable the network to achieve
self-reliance, and harness the power of vast quantities of
data generated by the users and network nodes to empower
such solutions. However, Self-healing in future mobile cellu-
lar networks must cope with several research challenges which
have been discussed below.

A. Challenge 1: Coping With Increased Number of
Conventional Undetectable Outages Arising From SON
Conflicts

SON functions deployed independently can potentially
come into conflict with each other. A list of potential paramet-
ric SON conflicts has been presented in [143]. Similarly, [144]
identifies the types of potential SON conflicts that may occur
in the network when multiple SON functions are deployed
concurrently. A consequence of these conflicts is paramet-
ric misconfiguration which can lead to degradation in user
QoE. While a number of studies, including but not limited
to [143] and [144], have proposed solutions for coordination
of SON functions, the general approach utilized for coordina-
tion is reactive rather than proactive in nature. While this may
be feasible in existing 4G and legacy networks, it cannot be
the way forward in 5G mobile cellular networks.

Possible Solution and Future Research Direction: In order
to proactively overcome outages due to parametric miscon-
figurations in 5G mobile cellular networks, the Self-healing
framework may benefit from the ability to predict when a
parametric misconfiguration might occur and take preventive
measures to rectify it. One method of doing that is to explore
the probabilistic reliability behavior of SON functions. This
can be done by exploring techniques such as hidden Markov
prediction models, as explored in [46].

Using hidden Markov models we can calculate the station-
ary probability of a parameter being misconfigured given a
sequence of parametric reconfigurations. This allows us to ana-
lyze the long-term reliability behavior of SON-enabled mobile
cellular networks to estimate the time of first occurrence of
misconfigurations and the fraction of time the network spends
in outage. Fig. 6 shows a Markovian SON coordination frame-
work that can project the effect of activation of SON functions
on the overall performance of the network. Such a solution can
also be used to identify the selection priorities of proactive
SON functions as well as their network parameters.

B. Challenge 2: Coping With Increased Outages Due to
Increased Network Density

Network densification, driven by the need to meet capacity
and data rate requirements of 5G mobile cellular networks,
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Fig. 6. Markovian SON coordination framework.

means that future mobile cellular networks will have to han-
dle far more network nodes than before. Higher cell densities
coupled with technologies such as millimeter wave spectrum
utilization, and more configurable parameters will result in
frequent network outages driven by both parametric miscon-
figurations and routine equipment failures as demonstrated in
Figs. 2 and 3.

1) Possible Solution and Future Research Direction: A
number of research areas have been highlighted in recent stud-
ies that can aid in dealing with network outages quickly and
efficiently, especially in the context of dense and ultra-dense
HetNets. One such approach is the control-data separation
architecture (CDSA) [69] where the control functionality lies
with macro cells while data transmission is handled by small
cells. This adds redundancy to the network architecture. For
example, in the event of a small cell failure, the macro cell
can handle both control and data transmissions to the affected
users.

Furthermore, with the development of UAV technology for
enabling 5G mobile cellular networks, UAV-based outage com-
pensation techniques, such as the one presented in [136], can
become ubiquitous. Additionally, decreasing cost of small cell
deployment will mean network densification itself can be used
to create redundancies within the network such that the UE-
to-cell ratio becomes less than 1. This will mean that in the
event of a small cell failure, there will be additional small cells
ready to serve the users without effecting their QoE. Network
densification will play an especially significant role in the con-
text of millimeter wave cells where coverage will be limited
to line of sight links and outages due to link obstruction will
be frequent.

C. Challenge 3: Coping With Sparsity of Data Due to
Smaller Number of Users Per Cell

With network densification, another challenge arises in
the form of data sparsity due to fewer users per cell. This

will make full outage detection and partial outage detection
extremely difficult since there will not be enough mea-
surements to accurately distinguish between cell edge users
and outage scenarios. Moreover, even though the expected
throughput per user will increase, decreasing user density per
cell will mean fewer users will consume more data, hence
data sparsity will stay an issue for Self-healing in 5G mobile
cellular networks.

1) Possible Solution and Future Research Direction: As
we saw in Section IV, the overwhelming majority of full
outage detection and partial outage detection solutions relied
on machine learning techniques. However, unlike analytical
or heuristic techniques, learning based algorithms are over-
whelmingly dependent on data from the network, which can
be sparse especially in the case of ultra-dense small cell
deployment. To improve the accuracy of learning-based out-
age detection solutions and to counter data sparsity in future
mobile cellular networks, measurement prediction techniques
can be used. Predictive techniques such as Grey prediction
model [72], and smoothing techniques such as Witten-Bell
smoothing [145] and Good-Turing smoothing [146] can be
used to remove knowledge gaps in the measurement data.

D. Challenge 4: Meeting 5G Latency Requirements in
Self-Healing

5G mobile cellular networks are expected to have end-to-
end data latency of 1 ms. This means that any Self-healing
solution deployed in the network must be able to detect,
diagnose and compensate any outage in far less time than
state-of-the-art solutions.

1) Possible Solution and Future Research Direction: Given
the nature of detection and compensation tasks within the
Self-healing framework, future Self-healing solutions must be
proactive in nature. This implies that the Self-healing frame-
work will predict when and where an outage might occur with
some probability, and execute changes in neighboring cells
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Fig. 7. Proactive Self-Healing Framework for Future Cellular Networks.

proactively. Despite the seemingly random nature of outages,
especially full outages, outage prediction is possible and has
been demonstrated by Kumar et al. [147] who have used dif-
ferent machine learning techniques such as neural networks,
NBC and SVM to predict the next fault from real network
data. Similarly, Kogeda and Agbinya [148] have predicted fault
occurrences by collecting the past data and calculating maxi-
mum likelihood of next fault location using Bayesian Network
prediction models.

All of the above-mentioned techniques rely on exploita-
tion of big data [12] to identify key patterns in cell and
user performance data and associating the information with
previous outage information and data. This will allow the
proactive Self-healing algorithms to identify changes in
network performance that lead to a failure or an outage. Fig. 7
illustrates the concept of exploiting big data resources for
prediction of faults in a future mobile cellular network. The
definition of big data in the context of Self-healing framework
includes historical fault data, user transition and handover data,
network traffic and cell load data, and contextual data mined
from sources such as social media.

E. Challenge 5: Meeting QoE Requirements in Self-Healing

The combination of requirements for 5G mobile cellular
networks including low latency, high capacity, high through-
put and low energy consumption means 5G networks will be
user QoE centric compared to legacy networks which were
user quality of service centric. This implies that meeting user
QoE requirements will be the utmost priority in future mobile
cellular networks, even in the event of an outage. Given that
outages due to failures and parameter misconfigurations are
likely to increase, meeting user QoE will be a key challenge
for Self-healing solutions.

1) Possible Solution and Future Research Direction: The
solution to meeting user QoE requirements despite outages
is to deploy intelligence-rich proactive Self-healing frame-
work such as the one shown in Fig. 7. The user-centricity of

the framework will be driven by spatio-temporal user activity
models. These include user mobility models derived from user
transition data in the form of MDT reports [52] along with user
location information which can easily be harvested from the
positioning sensors inside modern cell phones. Additionally,
user behavior load prediction models can be generated using
machine learning techniques shown in Fig. 8 while contextual
data from social media sources such as Twitter and Facebook
can be mapped to network topology which would help to iden-
tify potential traffic hotspots and failures. Historical fault data
collection can be done by setting up databases that would
include network failure records as well the KPI data imme-
diately preceding the failure. All this information will be fed
to the proactive fault prediction algorithms which would sit
alongside a reactive Self-healing triggering algorithm which
monitors fault data from live network.

F. Challenge 6: Coping With Bandwidth Constraints for
Self-Healing

Bandwidth constraints are one of the greatest limiting fac-
tors for mobile cellular network capacity. Limited bandwidth
means extra capacity can only be added by adding more cells
into the network. However, as discussed previously, network
densification can lead to a rise in network outages itself.
Furthermore, bandwidth limitation becomes even more acute
in the event of an outage when already strained neighboring
cell resources can become completely choked causing partial
outages.

1) Possible Solution and Future Research Direction: While
millimeter wave spectrum utilization has been promoted as
the primary solution to bandwidth limitation [106], it is still
in exploratory phases. In addition, the limited range of mil-
limeter wave cells does not make them the ideal candidates
for outage compensation solutions unless they are deployed
in very high densities. One possible solution to the issue of
bandwidth limitation for Self-healing is to deploy spectrum
sensing or cognitive radio solutions [18], [19]. Some outage
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Fig. 8. Machine Learning Tools to Enable Proactive Self-Healing Framework for Future Cellular Networks.

compensation solutions based on spectrum splitting have been
proposed in [132], [134], [140], and [141] but these solutions
propose to reserve special bandwidth called Healing Channels
(HCs) specifically for outage compensation. Given that mobile
cellular networks are already facing bandwidth shortage, this
approach may not be suitable especially when there are no out-
ages. To avoid dedicating bandwidth for outage compensation,
cognitive radio technologies can be explored to split the spec-
trum between HCs and normal bandwidth specifically in the
event of an outage. Not only would this improve radio resource
utilization under normal circumstances, it can also improve the
service provided to outage-affected users by assigning them
low interference resources.

G. Challenge 7: Enabling Self-Healing With Future
5G Services

Future 5G mobile cellular networks will be a combination of
a multitude of services including legacy call, text and data ser-
vices as well as Internet of Things services such as connected
homes and smart grids. Each of these services has its own
requirements. For example, providing wireless connectivity to
smart grids does not require very high data rates but data secu-
rity and robustness is highly important [149]. As discussed in
Section VI, existing studies on Self-healing only address how
legacy services such as data transmission and call connectivity
would be restored in the event of an outage and do not tackle
other services expected to be part of 5G networks.

1) Possible Solution and Future Research Directions:
Self-healing for future services such as Internet of Things con-
nectivity is still an open research topic despite being flagged
as one of the primary challenges to the technology [150].
Similarly, Self-healing with respect to smart grids has been
raised as a key issue [151]. Use of mobile cellular networks to
empower smart grids has been a long standing concept [149].
However, due to the differences in performance level require-
ments for different services, the task of coming up with
unified Self-healing solution is very difficult. Some studies
have proposed to use cognitive radio technologies to provide
the required performance levels in smart grids [152] which
means they can also be a potentially useful tool in restoring

performance levels in the event of an outage in the mobile
cellular network within the unified Self-healing framework.

VIII. CONCLUSION

Self-healing is potentially the most powerful SON compo-
nent in terms of reducing mobile cellular network operational
expenses, especially in future networks. However, to this
date, a comprehensive study on the existing literature on
Self-healing techniques for cellular networks was not carried
out. This study is an attempt to rectify this issue through
a complete background review of Self-healing in terms of
mobile cellular networks along with a description of the com-
plete Self-healing framework. Moreover, we have presented
methodologies, topologies, design metrics and control mecha-
nisms along with their descriptions which are employed in the
reviewed studies. We have also surveyed the studies in each
of the three Self-healing framework components, i.e., outage
detection, diagnosis and compensation in the event of a failure
or KPI degradation.

In addition to the review of existing literature supporting
Self-healing for mobile cellular networks, this study presents
and elaborates the challenges faced by Self-healing functions
in terms of future 5G mobile cellular networks while also
presenting possible solutions and future research directions. It
is hoped that this survey and the prospective research areas
presented within it will empower and encourage researchers
to create Self-healing solutions for future mobile cellular
networks that can address the limitations of existing research.
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