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Abstract

Today, patients are demanding a newer and more sophisticated health care sys-
tem, one that is more personalized and matches the speed of modern life. For
the latency and energy efficiency requirements to be met for a real-time collec-
tion and analysis of health data, an edge computing environment is the answer,
combined with 5G speeds and modern computing techniques. Previous health
care surveys have focused on new fog architecture and sensor types, which leaves
untouched the aspect of optimal computing techniques, such as encryption,
authentication, and classification that are used on the devices deployed in an
edge computing architecture. This paper aims first to survey the current and
emerging edge computing architectures and techniques for health care applica-
tions, as well as to identify requirements and challenges of devices for various
use cases. Edge computing application primarily focuses on the classification of
health data involving vital sign monitoring and fall detection. Other low-latency
applications perform specific symptom monitoring for diseases, such as gait
abnormalities in Parkinson's disease patients. We also present our exhaustive
review on edge computing data operations that include transmission, encryp-
tion, authentication, classification, reduction, and prediction. Even with these
advantages, edge computing has some associated challenges, including require-
ments for sophisticated privacy and data reduction methods to allow comparable
performance to their Cloud-based counterparts, but with lower computational
complexity. Future research directions in edge computing for health care have
been identified to offer a higher quality of life for users if addressed.

1 INTRODUCTION

In terms of computing power and response time, modern and next-generation health care provide a multitude of ser-
vices that have created a new set of requirements. In order to function at the peak of their ability, these newer devices
require swift and energy-efficient computing, greater storage capacity, and location awareness that traditional cloud com-
puting cannot cope with.1,2 Perhaps the most promising technology, proposed first by Bonomi et al,3 is fog computing,
which is sometimes termed “edge computing” due to fog referring to the movement of computing to the edge of the
network. The predecessor of edge computing, mobile cloud computing (MCC), is characterized by high data transmis-
sion costs, long response times, and limited coverage. Two similar computing methods, cloudlet and local cloud, offer
inferior quality of service (QoS) for new devices. The high costs associated with data transmission come from the high
network traffic, which affects the transmission times.4 Although cloudlet-based solutions have lower latency than MCC,
they still fail to secure the needed mobility for devices because of limited Wi-Fi coverage.1 Many works have compared
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the performance of cloud-based and edge-based computing and found that only edge-based computing can fulfill mod-
ern requirements for latency,5,6 mobility,7-9 and energy efficiency.10 In one instance,5 the use of cloud-only computing in
video analytics resulted in a doubled response time compared with client-only computing. The improved performance of
edge computing compared with traditional cloud computing can be utilized especially by the health care sector for many
applications. Edge-based solutions provide the framework for reduced latency for time-dependent solutions, such as vital
sign monitoring7,9 or fall detection for the elderly.11,12 They can also give users added security compared to traditional
computing, which allows for blood pressure, heart rate, blood sugar, and health history data to be transmitted to caregivers
via a connected system.7,8,13 As a result of improvement in tracking and mobility that comes with edge computing sys-
tems, health providers can care for people with chronic illnesses in their own homes using ambient sensors placed around
their homes in conjunction with wearable vital sign sensors.14,15 These sensors can collect location-dependent data, both
indoor and outdoor, which allows health care workers to determine whether a patient is in danger. Health care can now
become a personalized service, tailored specifically to each individual and their needs. To properly provide real-time qual-
ity service to patients, the edge devices and nodes need data operations to perform with low latency, energy efficiency,
location awareness, and a high level of security. The identification of specific data operation techniques that allow for
quality performance of an edge-based health care system is the main goal of this survey. In turn, this information can be
used to provide the optimal classification, authentication, encryption, and data reduction methods for the deployment of
an edge device. In the remaining sections of this paper, various topics will be discussed, including the following.

• Review of current surveys on health care
• A background of health care applications and their quality-of-experience requirements for future edge

computing–based health care systems. These requirements include low cost, low latency, high level of security,
location awareness, and energy efficiency.

• A discussion of cloud and cloudlet-based solutions and their outdated capabilities
• Edge-based solutions and their architecture, benefits, and enabled applications
• Taxonomy of edge computing–enabled health care classified by data operation and meeting the 5G performance targets
• Open research areas and issues

2 PAST WORK AND CONTRIBUTIONS

Health care–related technology surveys have appeared in publications since the early 2000s. These legacy surveys, how-
ever, do not take into account recent growth in the Internet of Things (IoT), fog computing, 5G, and requirements
associated with these areas. Table 1 represents an overview of the different attributes covered in past health care surveys,
as well as new attributes added by this survey. These attributes cover different aspects of IoT-based health care, such as
security, energy efficiency, and cost. More recent surveys that do consider these new topics in the health care domain
tend to focus on the types of available monitoring that edge computing provides, such as EEG, heart rate monitoring,
and fall detection. Architecture types, including the communications standards and platforms used by these applications,
is another popular topic. However, discussion of specific computing techniques was left untouched in the existing sur-
veys. This survey provides an exhaustive review of the most recent literature on optimal computing techniques for edge
computing platforms and details on how each of the health care requirements are fulfilled.

Apart from the health care surveys shown in Table 1, there is a considerable number of surveys26-36 solely focusing on
mobile edge computing (MEC) applications. Although these surveys cover extensive topics in edge computing, they fall
short on providing enough considerations for the requirements that are specific to health care. These surveys also fail to
outline actual computing techniques that can aid in the creation of an edge computing system for health care. Computing
techniques cannot be overlooked as it is a major part of deployment success for health care edge/fog applications.The
unique contributions of this survey are as follows:

• This paper identifies a needed shift from centralized cloud architectures to distributed fog- and edge-based architectures
that better meet the needs of a modern health care system with an excess of medical data as compared to legacy systems.
For this purpose, we have created a taxonomy to clearly identify the literature related to 5G performance targets that
can support these health care applications.

• This paper gives a short description of the evolution of health care services offered throughout the 21st century,
their shortcomings, and how low-latency networks enable efficient remote medical monitoring in the next-generation
5G-enabled health care systems.
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• This paper goes beyond existing surveys in health care by offering a comprehensive review on research done in the
state-of-the-art low-latency, energy-efficient, and secure computing for health care edge devices. This is categorized by
type of data operation, including transmission, encryption, authentication, classification, data reduction, and predic-
tion. Metrics for each category are discussed and techniques are compared for optimal performance. This comparison
can serve as a benchmark for identification of the ideal edge computing techniques in a given deployment scenario.

• This paper presents comprehensive discussion on challenges in edge computing for health care and identifies the
research directions therein. Notably, it discusses the three primary challenges faced by health care edge computing:
(1) coping with large data sets produced by medical sensors, (2) the legal issues associated with a patient's personal
medical data, and (3) the integration of artificial intelligence in a 5G environment.

3 EVOLUTION OF HEALTH CARE COMPUTING

This section discusses preliminaries of health care computing and motives for progressing from centralized cloud comput-
ing to a more distributed architecture, which is the basis of edge and fog computing. Figure 1 shows this shift from legacy
medical technology to an edge-enabled vision of health care. Also discussed are the specific qualifiers of edge health care
in terms of cost, energy efficiency, and quality of experience.

3.1 Health care application types
There are several ways of categorizing health care applications. They can be grouped by device type, data type, or by
specific use cases. Based on use cases, the main health care classes are the following:

• Real-time health monitoring
• Emergency management systems
• Health-aware mobile devices
• Health care information dissemination

Real-time health monitoring can utilize multiple platforms simultaneously. As an example, health monitoring of vital
signs can be done on a smartphone device,8 wearable sensors,7 or both,14 which can be seen from Figure 2. Emergency
monitoring systems are similar to real-time health monitoring except that they generate an alarm when a patient's vitals
drop below a certain threshold. With the advent of advanced mobile devices, patients are equipped with diagnostic fac-
ulties in the palm of their hand. Health care information is readily available on many websites, and now, through mobile
devices, personalized applications further provide health information and advice for patients, especially regarding specific
chronic illnesses.37,38 Modern health care also comes in different forms for the user:
• Wearable sensors
• Smartphone-based sensors
• Ambient sensors
Wearable sensors can detect heart rate abnormalities, blood pressure, body temperature, or glucose levels faster than
legacy technologies, such as finger prick glucose testers. Sensor data from an edge computing application is commonly
sent longer distances to a server. Smartphones are capable of harnessing built-in sensors, such as the microphone or
gyroscope, for medical purposes.39,40 Unlike wearable and smartphone-based sensors, which are physically closer to the
patient, ambient sensors are placed around a room or number of rooms to collect data on user position without the
patient wearing them. They allow for a greater amount of ease, and this setup is frequently used in applications involving
fall detection or, in dementia cases, for location tracking of the elderly. Ambient sensors can have standalone indoor or
standalone outdoor location capabilities, or both in some specialized sensors.

3.2 Cloud-based solutions
Cloud-only medical architectures comprise of a mobile device, cloud servers, and a network. These components may
have large distances between components, which further aggravates the problem of high latency (shown in Figure 2).
Recently, many medical monitoring solutions have included a comparison between traditional cloud architectures and
a distributed, or fog, approach. When using cloud-only solutions, the data retrieval times are too high for a real-time
emergency scenario, such as fall detection or stroke mitigation, both of which require swift response times from medical
professionals.8 Frequently sending information to the cloud for computation accounts for higher power consumption and
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FIGURE 1 Comparison of edge-enabled and legacy health care
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FIGURE 2 General fog/edge architecture for health care systems. IoT, Internet of Things

costs associated,2 even more so today, when the amount of data generated by sensors is very large. A typical cloud service
proved to have high latency and low sustained performance compared to distributed computing architecture with several
computing nodes at different geographical locations.6 Cloud-based solutions also do not offer the user a low-cost mobile
environment, which is required for many of the patient monitoring scenarios.12

3.3 Edge- and fog-based solutions
Edge- and fog-based solutions move the data processing closer to the network edge, which allows for faster response
times and increased energy efficiency. Instead of constantly moving data to the cloud for computing operations, which
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FIGURE 3 Quality-of-experience literature survey

accounts for the energy costs, data can be mined and processed on edge devices and servers closer to the user.12 For cases
involving health monitoring, low latency driven by edge and fog solutions allows for emergency medical help to arrive
in a timely manner. Due to the large amount of data traditionally sent to cloud services, privacy and security remains
a key issue, especially in cases where a patient's medical data could be hacked. By distributing information across a fog
instead of concentrating important information in one part of the network, enhanced privacy can be achieved.41 Ease
in usability in the devices is also important because these sensors must be user friendly enough for untrained personnel
to use correctly for accurate data transmission. The next section addresses the specifics of edge- and fog-based solutions
that have achieved the requirements for the next generation of medical devices. Existing works that focus on each of the
requirements are outlined in Figure 3. The specific requirements addressed are as follows:

• Cost
• Low latency
• High-level security/privacy
• Location awareness
• Energy efficiency
• Usability

3.3.1 Cost
Of the multitude of challenges associated with implementation of MEC in health care applications, the operating cost for
the provider as well as the user are critical. There are several variants of cost, for instance, high memory usage (function
of encryption block size, key length), sensor power consumption, memory usage, and computational costs. As preserva-
tion of client data is of utmost importance in health care applications, comparison of different security models in terms of
key generation time, memory requirements, bandwidth requirement, and encryption/decryption time have been exam-
ined in recent literature.41-43 While maintaining security and privacy of individual patient data is important, it must
be done within manageable computational constraints, both from the perspective of clients' decryption load as well as
the provider's edge computing resources. Identity-based encryption techniques assisted by decryption outsourcing has
been shown to enable small firms to shift the computational burden to the edge at a lower latency cost and throughput
overhead.44 Another factor to consider in the deployment of tele-health and tele-care services is the expenditures (CAPEX,
OPEX) for a robot-care service provider. One study carried out45 demonstrated the financial feasibility of a robot-based
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service care deployment architecture in a health care facility. The return on investment is shown to be negative for at
least four years after the deployment based on present estimates. Such a deployment would make a stronger case if it can
outperform human force and yield higher service duration for the same cost.46

3.3.2 Low latency
For many health care–related use cases, real-time processing is a key requirement. Fog and edge solutions offer a lower
latency compared to traditional cloud solutions,47 and some specific elements of the system design allow for this. In
existing fog deployments, an increased number of fog nodes contributes to a lower latency in data transfer.9 Various edge
mining techniques can also contribute to lowering the amount of time spent transferring data to cloud or fog/edge nodes
for computation or storage. In current literature, the most popular case requiring low latency is elderly monitoring in
homes. In some setups,48-50 sensors collect patients' data on current body status and transmit to a personal digital assistant
(PDA) or mobile phone, which does local processing and alerts family or emergency services if a fall is detected or a
deviation from healthy heart rate or blood pressure is recorded.

3.3.3 High level security/privacy
Due to the confidential nature of health and location information, it is important to guarantee users a high level of
security.31 Health information at the edge of the network, often on mobile devices, must be encrypted before transmission
to other nodes. Due to the energy constraints, this must be done in an efficient but effective manner. A large number of
possible computing nodes give rise to new ways of obtaining a patient's information, but at the same time, could allow for
a higher level of privacy due to distribution of vital information. To mitigate the possibility of intrusion, authentication
protocol and trust ratings are used in edge computing applications.51 A more in-depth review of security mechanisms
is included in a later section of this paper. Patient information intrusion has legal implications in many countries. For
example, in the United States, HIPAA (Health Insurance Portability and Accountability Act of 1996) calls for the safeguard
of health information and any breach of health data could result in a lawsuit.52

3.3.4 Location awareness
Location awareness is also a critical requirement for health-related edge computing because it allows for the patient to be
found in case of a health-related emergency. By using localization techniques specifically made for edge applications as
opposed to more expensive GPS location systems, a greater level of accuracy can be achieved.53 Using only a cloud server
and a simple infrared sensor, a person's position within the home, indoor or outdoor, can be inferred using algorithms.
There are different levels of coverage for location tracking applications. For instance, some54,55 have systems that allow for
a single room to be monitored, whereas others56-58 give location awareness for multiple (three to four) rooms in a home.

3.3.5 Energy efficiency
Edge computing continues to outperform cloud computing in terms of energy efficiency. Several works9,47 show that a
distributed architecture consumes less power than traditional cloud computing. However, with the distributed computing
being performed on smaller devices, a primary concern is developing computing applications that will preserve limited
battery life. Lower energy thresholds can be achieved by carefully creating or choosing encryption schemes and classi-
fication techniques for the health care applications.7,11 Edge mining, which reduces the amount of packets transmitted
to fog or cloud nodes, can also significantly decrease the amount of energy consumed.59 Proper resource management
can also be a contributor of high energy efficiency.60,61 In this context, Dey et al62 proposed a scheme for idle resource
management that aims to utilize free computation slots on smartphones in edge clusters.

3.3.6 Usability
Mobile devices, such as smartphones, have sufficient computing capabilities to run edge computing health care applica-
tions. However, these applications must also be easy enough for patients with no medical or technical training to use. For
example, in one study,11 a smartphone fall detection system design takes into account the changing position of a phone
in a person's pocket. The algorithms that run on the phone are robust to orientation and location of phone on the body.
Other elderly monitoring systems use ambient sensors placed around a room or multiple rooms so that very little human
intervention is needed. Similarly, wearable sensors in health applications must be simplistic in their design and not too
cumbersome for a patient to wear in everyday life. Overall, health edge computing devices must be simple to use, robust
to changes in position, and allow for natural body movements.
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3.4 Edge computing trade-offs in health care systems
Edge computing contributes in improving the health care standards by providing faster and more comprehensive treat-
ment ubiquitously. Through large-scale deployment of health sensors, patient visits to hospitals and clinics can be
reduced, especially through deploying devices that can provide computing capabilities for diagnosis of disease and patient
monitoring. These edge sensor devices can be easily maintained by patients and lead to new data insights on health
care through their continuous monitoring of vital signs. Computing on the edge can also lower data transmission costs
by migrating necessary data from the servers to the edge. Having data in close vicinity also reduces latency issues in
the Cloud platforms. Although edge computing offers many benefits, there are multiple trade-offs and challenges when
using a decentralized approach. Using diverse types of platforms and servers introduces and induces a multitude of chal-
lenges that include connectivity, scaling, resource and data management, and reliability of nodes. The integration of
these heterogeneous sensors and nodes would require additional resource and data management techniques on edge
nodes, whereas cloud-based computing only requires one centralized management and processing facility.31 For seam-
less connectivity, the interface of multiple coding languages is necessary and is one research area that requires substantial
research and development. As the needs of a health care system become greater, the scale and complexity of work flows
will become more difficult to manage.63 Potential sources of bottlenecks and constraints in this dynamic system must be
detected and managed in real time. Additionally, these IoT devices have lower computation and storage resources, which
complicates allocation. A recent work64 introduces the concept of EdgeMesh, which distributes the decision making for
resource and computation management among edge devices within the network. EdgeMesh also has built-in capacity for
resource discovery, which is necessary because IoT devices have limited knowledge of other nearby working platforms.
However, additional work on optimization of the management schemes is essential. Security of personal data is another
challenge that IoT for health care must address before large-scale distribution.65 Reliability of new communication pro-
tocols for IoT usage is not extremely high, which causes failures in the network.33 Because these failures are not reported
to a centralized body, detection of flaws in an IoT network are difficult to diagnose. Furthermore, there is a dire need
to conduct substantial research in the health care service management sector. The reason is that some medical requests
require urgent attention before others. This requires a predefined protocol for priority services within the distributed
edge network.

4 EDGE COMPUTING SOLUTIONS FOR HEALTH CARE

This section outlines existing solutions for health care edge computing. Figure 4 outlines the basic structure of the section
and includes all of the relevant citations from the main body of the section. The first topic discussed is proposed archi-
tectures, where within the architectures are the individual components, including edge device, fog or edge nodes, and
the Cloud, as shown in Figure 5. This figure also shows the locations where the different computations within an edge-
or fog-based network take place. These types of operations performed on edge and fog nodes or devices is the topic of
Section 4.2. We discuss in depth the retrieval, encryption, classification, and compression techniques and analyze their
performance in terms of energy efficiency, latency, and accuracy.

4.1 Architectures
General architecture of an edge computing solution typically consists of a user device, sensor, or IoT device, a smartphone
with computing capabilities, and an edge, fog, or cloud computing node. The computing is often distributed between the
user device and the fog node. The relationship between edge and cloud is an important aspect of the architecture. The edge
focuses on fast intervention, whereas the cloud's benefits are realized in terms of long-term data. This relationship brings
about challenges in load balancing and routing on edge and cloud servers.66 Table 2 shows the general architecture and
the usual types of devices used. A recently proposed architecture61 includes considerations for an IoT layer in addition to a
fog and cloud layer, which is a common setup in literature for a fog or edge health care system. In this IoT layer, all medical
sensors are operated over an IoT network with each device having a unique identifier. The data are then transferred to
a fog layer via Bluetooth, ZigBee, or Wi-Fi for computations and aggregation. The destination of this medical data is a
data center layer or Cloud for more intensive processing tasks. This common setup allows for computing to be done with
lower latency as compared to a purely centralized approach. The individual components of a common fog computing
environment are outlined in the following subsections.
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FIGURE 4 Key paper sections. IoT,
Internet of Things; KPI, key performance
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4.1.1 User devices
At the very edge of the network is the user device. Often the user devices can manage some computing before more
power-intensive tasks are performed in a separate edge or fog node. These devices can be categorized in three major
groups-smart devices, legacy medical instruments, and IoT-based sensor kits. Earlier versions of edge computing utilized
low cost devices, such as Nokia mobile phones or PDAs.78 As companies began releasing smart devices in bulk, smart-
phones such as the Samsung Galaxy S311 became more affordable for health care applications. Mobile phones can utilize
built-in sensors or microphones to generate health data such as heart rate or to measure detailed heart sounds. Although
the smartphone-based sensors offer ease of usage to patients, it is limited in the variety of sensors that can be embedded in
its hardware. On the other hand, dedicated medical sensors have the capability to generate and handle larger sensor data,
which leads to more accurate diagnoses. Common uses of sensors include heart and respiration rate, blood pressure, and
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FIGURE 5 Locations of data operations in relation to architecture. IoT, Internet of Things

glucose levels for health monitoring. Additional sensing capabilities include determining motion states, such as activity
type, number of steps, or sleep cycle.20 The newest trend for health edge computing is the use of IoT devices. These devices
diverge from the traditional sensor category due to their mutual interconnectivity, which is absent in legacy health care
sensors. Multiple devices, sometimes placed across the body, are connected to a network and can also communicate with
each other using different machine-to-machine (M2M) protocols.23 However, an aspect that has been explored in recent
times is the optimal placement of these sensing devices. Table 2 summarizes common sensor types and placement on the
body for wearable devices in literature. Novel user devices, such as the wireless capsule endoscope (WCE),79 or special-
ized prototype device,80 could also potentially be used as an edge user device. Another aspect of creating an easy-to-use
health care system is to provide users with an acceptable level of visualization on their device. For example, the authors of
one application37 talked to front-line health professionals and discovered that resources for pregnant women were often
lost, and in the cases involving multicultural women, interpreters were often limited, so their application was created
with plenty of information for these soon-to-be mothers. Some applications4,38 take usability to a higher level by provid-
ing customizable applications for patients. Ensuring that information provided to patients over an application is clearly
understandable to nonprofessionals is another issue. The authors of another publication81 use graphs and other visuals
to aid patients in understanding health data and provide a clear menu for navigation of an application.

4.1.2 Communication protocols
Communication between a device and fog node is done with short-range communication protocols, such as IEEE 802.15.1
or 802.15.4. Often a sensor node will be connected to additional computing devices or cloud services using a wireless
802.11 protocol82 that involves using a sensor node, mobile computing devices, and a cloud service. Many applications48,50

utilize IEEE 802.15.1 or Bluetooth as a protocol for communication between a medical device and a smartphone, where
computation is done. Once a small amount of computing is finished on the smart device, data are transferred to a doctor
or an additional server via a mobile communication service such as 4G or 5G.

4.1.3 Network
Once information is gathered at the very edge of the network where the sensors exist, it travels toward the near end
and far end of the network to be stored or, in some cases, additionally processed. Using a fog node can give a health
care system greater computing power that smaller handheld devices might not be able to achieve. In an edge computing
architecture, data operations, such as classification or compression, are completed at the edge of the network. These edge
nodes are often small servers that allow for the fast processing of data that mobile devices cannot achieve. Edge or fog
nodes can be a multitude of devices, deployed at different distances between the Cloud and edge user device, depending
on the operating range. In previous literature, commercially available products such as Raspberry Pi,12 Arduino,15,83,84

and field-programmable gate array (FPGA)85 platforms served as edge gateways. These are popular solutions because of
low cost and simple programming. Other research studies use a graphics processing unit in cases where pictures are the
data input to be computed.67 Other popular nodes are Telos Mote59,77 and Intel Edison,86 especially for cases involving
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ambient sensing. Telos is a collection of sensing devices developed by the University of California Berkeley for wireless
sensor network research that utilizes WPAN/IEEE 802.15.4.87 Intel Edison,88 although now discontinued, it is similar to
the Telos mote, except that it is compatible with IEEE 802.11 and IEEE 802.15.1. Most of the papers surveyed have some
connection to the Cloud; however, the focus of these papers is to demonstrate that the majority of computing should be
done at the network edge to decrease the strain on the Cloud and to reduce latency. After computation is done at the edge
of the network, additional computation or storage might be necessary, which is why information is sent further away
from the user to the Cloud. The Cloud has a higher computing capacity than fog or edge nodes because it utilizes multiple
servers for parallel computing and further analysis. Additionally, the Cloud has data centers that allows for more data
storage that is sometimes needed for patient records.89 Some research90 also explores the relationship between fog and
cloud, which outlines a fog-cloud architecture for the balancing of node workloads for large event streams.

4.2 Data operations
Current research in edge computing for health care focuses on measuring certain key performance indicators (KPIs) that
are important for the progression of health services, such as response time, energy efficiency, and bandwidth cost. Papers
tend to focus on optimizing the KPIs related to a particular section of the edge computing architecture, for instance,
either the edge device or fog node in a given system. The aim of this section is to provide a detailed overview of best
data operation techniques for a health care edge computing scenario. The six basic operations discussed are retrieval,
encryption, classification, authentication, data reduction, and prediction. Because security is a major focus for health care
because of sensitive personal data, the trade-off between low latency and high security within protocols is discussed.

4.2.1 Transmission and retrieval
Data retrieval accounts for some latency in health care applications. Table 3 outlines related works on energy-efficient
and low-latency data transmission and retrieval. For example,8 transferring data to a cloud service increases the latency
of the system by 2.71 seconds. Using a smartphone for distributed computing decreases the latency in transmission to
0.13 seconds versus 2.84 seconds using cloud-only architecture. Some techniques focus on using data selection to choose
which information gets sent to the server or Cloud for further computing. Another research91 uses a Nash bargaining
approach for selecting anomalous data to be transferred to the Cloud for further storage. This approach outperforms the
traditional Cloud in terms of latency and power consumption. A similar approach, called HiCH,71 shows that the HiCH
architecture has a lower data dissemination delay as compared to a baseline IoT system. Electrocardiography, or ECG, is a
common medical procedure in which the electrical activity of the heart is analyzed over a period of time.96 Abnormalities
in this measurement can point to health conditions that normally go unnoticed, which makes it a popular test for edge
computing devices. In some cases,92 ECG data are transferred to an Amazon cloud server for computing and the round-trip
time is compared for sending the same information to an edge gateway. As expected, the edge gateway transmission has
a much lower round-trip time as compared with the Cloud.

4.2.2 Encryption
Some encryption techniques used on edge devices are more energy efficient than others. If a device has a lower energy
encryption scheme, a higher percentage of available energy is able to be utilized for computing. Table 4 summarizes
the different encryption schemes proposed for edge computing–based health care devices. One very popular encryption
technique on smart edge devices is elliptic-curve cryptography (ECC). As an example,101 a key is generated using ECC on
the edge device and key agreement is performed using the Diffie-Hellman (DH) scheme. In another work,8 the authors
show a way of efficiently measuring heart rate and blood pressure using smartphones and extend their work to include a
secure encryption mechanism. They choose ECC primarily because it requires a much lower key size, which is optimal
for a smartphone with relatively limited storage and computing resources. Another work41 also uses the ECC form in
combination with bilinear pairing IBE to lower the bit cost for a 256-bit security level compared with an RSA form in a fog
architecture. Another source of encryption is hardware based, such as the lightweight KATAN ciphers on field FPGAs.102

Tang et al presented a framework called the privacy-preserving fog-assisted information sharing scheme (PFHD).43 This
scheme has privacy preservation on both the fog and cloud layers. Their encryption scheme (PFHD) is compared with
traditional ciphertext policy attribute-based encryption (CP-ABE) in terms of cost. The storage cost and encryption time
of PFHD is lower because of ciphertext storage on the fog device. A proposed personal access policy method by Tang
et al is compared with CP-ABE and is found to have a lower energy consumption for the same number of attributes.103 A
comparison77 shows that, for the same level of security, RSA and Diffie-Hellman have a higher key size as opposed to ECC
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TABLE 3 Related works on data transmission and retrieval

Reference Technique Contribution Results

Thiyagaraja et al8 Smartphone computing Comparison of distributed Blood pressure analysis done fully
versus cloud computing on smartphone has lower latency

than cloud platform; data retrieval
from Cloud incurs time overhead

Azimi et al71 Hierarchal fog-assisted Low-latency transmission HiCH architecture has lower latency
computing (HiCH) than the baseline IoT system

Roy et al91 Critically-aware data Low-latency and energy- Compared with Cloud, CARE has
transmission (CARE) efficient transmission reduction of data dissemination delay

and power consumption
Hosseini et al92 EEG data transmission Low-latency transmission Lower round trip time for edge

gateway compared with Amazon Cloud
Mahmud et al93 Distributed fog computing Low-latency transmission Using fog node for computing reduces

data size and transmission time
compared with sending all raw data

Wang et al94 Fault-tolerant transmission Low-latency transmission Fault-tolerant data transmission
increases reliability of medical fog
system

Pace et al95 Distributed computing Low-latency transmission Reduced round trip and processing
time for edge-assisted computing

or symmetric encryption. Therefore, the authors use an ECC-based method over IEEE 802.15.4 standard for an indoor
monitoring application. Fully homomorphic encryption (FHE) is used by many works for its ability to analyze data in
an encrypted form.97,104 In their large-scale medical smart cities architecture proposal, Sun et al97 reduce the number of
ciphertexts sent back to a receiver, which is an energy-efficient revision to an existing scheme using FHE. Achieving an
efficient form of privacy is another security concern for health care systems. One such method is presented by Saha et al.105

Their identity manager framework protects data with low time complexity by using a one-point cryptographic exchange
between nodes. Recent research98 into concealment of patient records has shown that enhanced value substitution (EVS)
can achieve a high level of privacy. One of the papers41 surveyed provided a privacy protocol called Decoy Medical Big
Data (DMBD). In this method, decoy files are retrieved for every file, versus previous techniques that only have decoy
files when an attacker is present. A privacy management framework ensures anonymity of patient files by storing health
profiles at the user side of a fog node. Each Internet-of-Health-Things (IoHT) device is protected with a pseudonym to
reduce linkage to real health data for each patient. Furthermore, a clustering technique ensures privacy by a two-stage
concealment process that disfigures data structures in patient health data. A recently developed framework99 provides
additional defense against quantum attacks, which have emerged from recent advances in quantum computing.

4.2.3 Authentication
Authentication is another requirement for a secure health care computing system that is closely related to encryption, so
it has also been a focus for fog and edge computing technologies in health care. Table 5 provides a review on proposed
literature in secure and energy-efficient authentication protocols for edge-based health care systems. Authenticated key
agreement (AKA) proves to be a guarantor of privacy for health care applications, based on a study by Jia et al.101 AKA
achieves perfect forward privacy and is immune to many different types of attacks, including offline dictionary, stolen
verifier, and replay. Another work108 introduces a novel way of generating a message authentication code by calculating
values of interest from a patient's ECG signal and comparing the value to previously stored values. This saves the device
from having to generate a key and, instead, simply sends the patient data that are verified or rejected by the server based on
the data characteristics. Because fog computing has been a recent trend, a multitude of papers on fog node authentication
has been published.41,42,51 One such paper51 provides certificate revocation scheme for increased energy efficiency. It
outperforms two other schemes, namely, certificate revocation list (CRL), and online certificate status protocol (OCSP),
in terms of packet size reduction and communication overhead. Other fog node authentication schemes106 deviate from
the quantitative cost analysis and instead provide attack immunity explanations. The node authentication in this work
is immune to attacks such as replay, user impersonation, and session key discloser attacks. Al Hamid et al use a mutual
authentication protocol so that each party (node) must authenticate the other to ensure security before any messages
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TABLE 4 Related works on encryption

Reference Technique Contribution Results

Al Hamid et al41 Bilinear pairing IBE Energy-efficient encryption For 256-bit security level, ECC
performs with lower bit cost than
Rivest-Shamir-Adleman (RSA)

Giri et al42 Elliptic curve cryptography Low-latency encryption ECC has low time complexity but
(ECC) has higher communication cost

Tang et al43 Privacy-preserving fog- Low-latency encryption Encryption time for PFHD is
assisted information lower than ciphertext policy

sharing scheme (PFHD) attribute-based encryption (CP-ABE)
Lin et al44 Boneh-Franklin identity-based Energy-efficient encryption For 50 attributes, 11 MB of overhead

encryption (IBE) and 1000 s of time cost
Ghosh et al77 Modified elliptic curve Energy-efficient encryption Marginal amount of overhead

cryptography (MECC)
Sun et al97 Fully homomorphic Energy-efficient and low- Their scheme has lower implementation

encryption scheme (FHE) latency encryption time than a comparable scheme with
the same security parameter

Elmisery et al98 Enhanced value substitution High level of concealment Trade-off between privacy level and
(EVS) of patient records accuracy for higher orders of EVS

Aujla et al99 Lattice-based cryptosystem High-level security Effective against quantum attacks
Elmisery et al100 Ciphertext policy attribute- CP-ABE performance Trade-off between the number of fog nodes

based encryption (CP-ABE) Evaluation and key generation times

TABLE 5 Related works on authentication

Reference Technique Contribution Results

Al Hamid et al41 Decoy Medical Big Energy-efficient Their scheme has lowest computational
Data (DMBD) mutual node authentication cost compared with other schemes

authentication protocol
Giri et al42 SecHealth Secure SecHealth is able to protect against

authentication phase authentication extraction of key and replay attacks
Alrawais et al51 Certificate revocation Energy-efficient fog Their scheme has lower packet sizes

scheme node authentication than two other schemes: certificate
revocation list (CRL) and online
certificate status protocol (OCSP)

Jia et al101 Authenticated key Secure fog node Perfect forward privacy is guaranteed
agreement (AKA) scheme authentication with the AKA scheme and is immune to

offline dictionary attack, stolen-verifier attack,
man in the middle attack, and replay attack

Amin et al106 Distributed cloud Energy-efficient Their scheme is immune to replay attack,
environment authentication node authentication impersonation attack, and session

scheme key discloser attack
Zhou et al107 Attribute-based designated Energy-efficient Low communication cost and storage

verifier scheme authentication scheme overhead for their method

are sent via a mutual authentication key generated randomly.41 A very similar authentication is used by the proposed
SecHealth architecture42 where a key is determined as equal and accepted by both parties or not equal, and is rejected.

4.2.4 Classification and prediction
Classification of raw data collected by health sensors is normally completed using simple or advanced algorithms, depend-
ing on the computing power of the device, and is a very common research theme in health care–related computing. Table 6
summarizes techniques used to classify or predict different health care information types and their results. Activity-based
recognition is the most popular research related to classification in health care edge computing because robust techniques
are needed for devices that have lower storage and computing capabilities. Low energy fall detection algorithms, for
example, can be deployed on a smartphone device. In Bhargava and Ivanov's work,12 fall detection algorithms are run both
on a smartphone initially and, then, on a back-end module connected to a cloud server. Different works in literature have
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TABLE 7 Related works on data reduction

Reference Technique Information type Contribution Results

Bhargave and Ivanov12 Iterative edge Activity state Low-latency and Less than 0.5 second latency
mining + ClassAct accurate event for ClassAct + Bare

reduction Necessities (BN) algorithm
Gaura et al59 Iterative edge Temperature Raw data and L-SIP performs with

mining-L-SIP packet reduction 95.5% packet reduction
Dubey et al69 Dynamic time ECG Low-latency DTW reduces ECG data

warping (DTW) data reduction sent to cloud by 98%
Basu et al114 Inexact computing ECG Energy-efficient Using inexact computing and

+ morphological data reduction filtering reduces data processing
filtering compared with zero-error computing

tried to improve the existing classification/prediction accuracy for edge-based health care device algorithms. One-class
support vector machine (SVM) with Gaussian Kernel's accuracy is assessed to be up to 75% in classifying visiting events
in an elderly person's home when room sensors in combination with a wearable Fitbit device is used as a data source.56

Other works have compared several standard machine learning (ML) techniques to determine the most energy-efficient
or low-latency classification method. For example, Bhatia and Sood109 compare three types of ML techniques, namely,
Bayesian belief network (BBN), SVM, and K-nearest neighbors (KNN) on a data set of breath rate and humidity level.
The Bayesian belief network attained the highest accuracy compared to SVM and KNN. However, this work does not pro-
vide any quantitative analysis of the energy efficiency of these approaches, which is an oversight of much of the research
surveyed. Artificial neural networks (ANNs) have exploded recently in classification because they have shown to accu-
mulate a lower classification error than other techniques, such as linear regression and decision trees.68 Others92 have
used a neural network, specifically convolutional neural network (CNN), to classify EEG rhythms with low latency at an
edge gateway. Increasing the number of attributes can also make for a more useful program. In an early work,78 a Weka
AnswerTree correctly classified 96% of 17 different heart rhythm types, which is the highest number of heart rhythm types
at the time of publication.

A small portion of recent work in edge computing for health care is prediction algorithms for different data sets such
as images of daily activity. The goal of Castro et al,67 for example, is the prediction of daily activities based on the input of
annotated egocentric images taken using a smartphone worn around the neck. The authors use a CNN combined with a
random decision forest (RDF) to predict activities in 19 classes. For individual classes, some ML techniques scored slightly
higher than the chosen CNN technique. For reading and socializing classes, KNN had a higher accuracy in prediction
than the CNN combined with RDF. A similar activity prediction method112 uses a Bayesian network to predict the next
daily activity of participants. The input in this study is sensor information from five to six rooms of the home over 4 to 6
months. The Bayesian network correctly classifies about 60% of 11 activity classes. This result is compared to SVM, naïve
Bayes (NB), and multilayer perceptron (MLP) classification ability, and the Bayesian network outperforms all of these in
terms of accuracy. A recent work by Sood et al uses ML techniques with patient information to predict and model the
stages of hypertension in adults.113 Using an ANN, the authors were able to obtain a lower classification time than KNN
and MLP.

Another issue is predicting future network traffic to optimize data rates and routing decisions for a health care system.
Muhammed et al designed and tested a deep learning network traffic analysis and prediction (DLNTAP) component that
can aid this optimization.47 Deep learning network traffic analysis and prediction relies on recurrent neural networks
distributed across a cloudlet layer.

4.2.5 Edge mining and data reduction
To cater to the exponential data storage and processing requirements at the Cloud, edge mining is leveraged on the edge
computing devices to decrease the amount of data transmitted to a Cloud service. The existing works that include this
approach to data reduction are discussed in Table 7. Based on the definition, edge mining is “processing sensory data near
or at the point at which it is sensed, in order to convert it from a raw signal to contextually relevant information.”59

Edge mining focuses on saving packets rather than individual bits of information. The General Spanish Inquisition Pro-
tocol (G-SIP) senses, filters, detects, and conditionally transmits events through the network. One setup69 uses a GNU zip
application on a fog computer to compress and decompress data to be sent. Reducing and compressing data sent across
the network can account for a major part of energy-efficient systems. Bhargava and Ivanov12 used a combined ClassAct
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and Bare Necessities edge mining algorithm to classify anomalous wandering activity in adults with Alzheimer's dis-
ease. They were able to classify walking and standing events with more than 97.9% accuracy and low latency. According
to the authors, this approach is favored over Linear SIP (L-SIP) because the raw signal does not need to be completely
constructed. Althebyan et al9 outlined a detailed architecture for data reduction when using MEC servers as a comput-
ing resource. In this proposed system, patient sensors collect data such as temperature, blood glucose, and activity, and
transmits it to cloudlets in the vicinity. The cloudlet sends only the abnormal values associated with a patient to the MEC
servers and immediately wipes its memory to conserve patient privacy. The MEC system and attached decision support
system therefore only has to process and give feedback for the abnormal values instead of analyzing a bulk of normal val-
ues. A reduction technique that lowers the computing complexity, called inexact computing, is used in conjunction with
morphological filtering to reduce data processing for ECG data compared with zero-error computing.114 Data reduction
is also needed for the diagnosis of medical images, which often contain too high a resolution to be sent for real-time anal-
ysis. A solution proposed for this problem is compressed cellular neural networks,115 which are superior to CNN in cases
involving image processing tasks on an edge device. The authors investigate edge segmented images on an FPGA, which
can be used as an edge device.

5 FUTURE RESEARCH CHALLENGES

To allow the future 5G network paradigm to support the edge computing–based health care systems and truly realize
benefits to the community, several research challenges that serve as a hindrance must be overcome.

5.1 Large-scale health care
Most of the edge computing solutions for health care are tested in small-scale environments. One paper by Althebyan et al9

proposes architectures that may work well in large-scale health care scenarios. The proposed system has an average delay
of about half a second and about 0.003 kWH of power consumption for 150 000 users using 50 cloudlets. This accounts
for a large number of users and considers a decision-making model that could help public health workers notice trends
in disease spread. Similar prototype systems86,116 simulate a medical service that can handle a large number of fog nodes.
The system modeled by Borthakur et al86 contains up to 25 fog nodes and 1000 users in each of the 10 community service
nodes, whereas Kafhali and Salah's system can handle up to 25 fog nodes. However, even though both of these studies
use a large number of users, they still do not compare to the actual needs of a large medical community. A health care
system will need to accommodate a huge number of patients being treated in a hospital. The number of staffed beds in
registered hospitals in the United States was 894 574 in 2006. The hospital admission for same year stood at 35 158 934.
These numbers do not include smaller specialized hospitals such as gynecology, ENT, and rehabilitation hospitals.117

Edge-enabled health care systems will help reduce the glaring disparity between the existing infrastructure and hospital
requirements for simultaneous record storage and patient monitoring.

5.2 Big data management
A large-scale health care system combined with real-time data acquisition guarantees that a large amount of data needs
to be analyzed and secured. This issue is partially addressed in edge mining techniques, which significantly reduces the
amount of data sent to cloud services; however, further reduction is needed for long-term and continuous data collection
from medical sensors. Often, this data does not necessarily need to be reduced, but analyzed in bulk quantities, sometimes
as large as exobytes.118 This means that new analysis techniques that rely on data features must be developed.

5.3 Patient information privacy
While edge-enabled health care devices enable better quality of life for patients and open revenue avenues for health
care providers and 5G network operators, there are considerable concerns related to patient information privacy that will
exaggerate with large-scale deployment. Currently, existing HIPAA laws are not sufficiently established to be applicable
on edge-enabled health care monitoring systems. As several stakeholders such as research organizations and insurance
companies view patient information as a valuable asset, any data breach will be accompanied by legal implications for
both the health provider as well as the network operator.52 To complicate matters, these laws and restrictions on patient
data storage vary on country and region.119 For example, Italy and Germany have no such restrictions. Current patient
information privacy protocols focus on safeguarding personal details, such as name, address, and social security number.
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In their work on ensuring health care privacy, Cavoukian et al reveal that “any information, if linked to an identifiable
individual, can become personal in nature, be it biographical, biological, genealogical, historical, transactional, locational,
relational, computational, vocational, or reputational.”120 Additionally, as patients acquire and own their own medical
data through IoT devices, methods of patient permission-based authorization are needed. One such method is described
in a blockchain-based MEC framework and is immune to unauthorized access and single point of failure.121 In light of
the stated facts, sophisticated privacy and anonymization structures are prerequisites for large-scale health care systems.
Computational complex cryptographic techniques jeopardize computation efficiency, but anonymization may also have
risk of breach or theft.122 The distribution of the workload between sensor nodes and edge computing platforms without
any compromise on privacy and security also remains an investigable challenge.

5.4 Integrated AI-5G for MEC-enabled health care
Current network deployments do not have the capabilities or capacity to handle large-scale distributed sensor-based
medical monitoring and reporting. Converging telecommunications and IT services from the centralized cloud platform
to the edge is essential but dependent on success of multiple enabling technologies. One of the key enablers is virtu-
alization techniques including virtual machines (VMs) and containers. While VMs provide its users a fully functional
machine, regardless of the underlying hardware architecture, container environments such as Docker facilitate edge
computing devices by offering light weight virtualization solutions at user devices.123 Similarly, network function virtu-
alization (NFV) decouples network functions and services from proprietary hardware, allowing colocation of multiple
service instances over the same VM and consequentially saving in the operator's capital and operational expenditures. In
an MEC-based health care environment, NFV provides the operator the ability to transfer system processes from one edge
platform to another when required, for instance, when there is congestion due to flash crowd events.124 Another crucial
enabling technology is software-defined networks (SDNs). The main principal behind SDN is the decoupling of control
and data plane, and introduction of a logical centralized control through which multiple virtual network instances can
be initiated and offered via edge to the users. Coordination of dynamic provisioning of distributed services at the net-
work edge is a challenge with existing network architectures. Software-defined networks are expected to play a key role in
providing network connectivity and service management across heterogenous MEC platforms.125 In addition to this, net-
work slicing allows partitioning of one network into multiple instances, each optimized for a particular application/use
case.126,127 For instance, we may have different 5G network slices for mobile broadband, automotive communication,
and massive IoT.30 Because enhanced mobile broadband in 5G requires high capacity, several other related technologies
deployed in the RAN would enable shorter transmission time interval (TTI), pipelined packet processing, efficient radio
resource control (RRC), and support of larger bandwidth. Some of these supporting technologies include user-centric
architectures,128,129 massive MIMO (mMIMO),130 and transmission in millimeter wave (mmWave) spectrum.131-133

While 5G deployment is a key enabler to large-scale MEC-based health care infrastructure deployment, integration of
artificial intelligence (AI) is essential to provide the most appropriate and timely services to the users. Artificial intelli-
gence will leverage many factors, such as user mobility patterns, device usage patterns, patients' vital monitoring records,
and existing medical conditions to provide timely diagnosis of health problems. Recent breakthroughs in ML, and in par-
ticular deep learning, have enabled advancements in several areas from face recognition,134 to medical diagnosis,135 and
natural language processing.136 However, they involve complex processing of huge data sets in centralized and remote
data centers and require massive amount of storage and computing power. As the entire premise behind shifting pro-
cessing at the edge hinges on ultrareliable and low-latency communication (URLLC), it is imperative that distributed,
low-latency, and reliable edge ML models are trained on local data. Edge ML provides dual benefits of low cost and reduced
latency, which is important for mission-critical IoT sensor devices on patients. An AI-integrated 5G infrastructure for a
distributed health care system may include any combination of the three major ML categories, ie, supervised learning,
unsupervised learning, and reinforcement learning. More details about these techniques in relevance with edge platforms
can be found in a recent survey.137 When it comes to neural networks, there are some architectures that are more suited
for MEC deployment. These include (i) auto encoders (AEs) and (ii) generative adversarial networks (GANs). An AE is
a stack of two feed-forward neural networks. The first phase called encoding involves compressing the original data into
a short code representation, whereas in the second phase the compressed representation is decompressed in the same
dimension space as the original input.138 Auto encoders learn distinct features of the data set, which are vital for anomaly
detection, or from the perspective of health care MEC, for diagnosis of rare occurring diseases. To overcome the issue of
nonavailability of huge data sets for localized learning in edge ML, GANs generate new data samples given by the esti-
mated distribution of the input data samples. This is done from two NNs, a generator that produces fake data samples, and
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a discriminator that tries to identify the fake data samples created by the generator from the data set. The training reaches
a Nash equilibrium when the discriminator is unable to distinguish between real and fake data points within the data set.
The AI implementation at the edge can be implemented using a helper-device (h-d) split, where each device individually
builds a learning model from the local data and then transfers the local model to a helper that aggregates all the models
uploaded from multiple devices.139,140 In case a local model is exceeding a device's memory constraints, the model can be
split and distributed between multiple devices. The intermediate model, in this case, will be transferred between devices
during forward and backward training operations.141

Similar to its application in self-organizing network–enabled 5G wireless networks,142,143 the use of artificial intelli-
gence in health care systems is common in literature, as outlined in the previous section on classification and prediction.
Artificial intelligence can take in several inputs such as patient variables (age, gender, medical conditions) and use these
to give more insights on abnormal values for classification, as doctors do when diagnosing a patient. This ensures a
context-aware health system, which is important for personalized results.16 Artificial intelligence techniques in literature
have shown to be more useful than simple threshold-based methods. One of these described a task involving the diagnosis
of lung cancer in which IBM Watson achieved a higher precision in diagnosis than the average hospital.14 Similarly, other
works for smart health care using edge computing has demonstrated higher accuracy for a voice disorder assessment144

and high prediction of pain emotion detection145 to allow the caregivers to proactively attend to patients' needs. Despite all
the research and IoT device advancements, there is still much work to be done in improving the energy efficiency aspect
of highly complex AI methods. In particular, the trade-off between performance and data computational efficiency must
be proactively managed. Researchers should focus on developing low-latency decentralized training models on the edge
devices that can use diverse input data from health sensors (voice, gait, etc) and yield accurate individualized inferences.
Additionally, many social concerns about the use of artificial intelligence, especially involving health care decisions, must
be addressed.

6 CONCLUSION

Edge computing is an interesting domain of the future cellular networks that aims to support multitude of IoT devices
through low-latency processing. From the multitude of use cases, our focus in this survey paper was its application in
health care systems. Through this work, we attempted to fill the gap in current health care surveys, which tend to focus
on architecture and application types as opposed to maximum QoS for data operations. Moreover, we have presented the
associated architecture, data operations, and the consumer perspective as detailed in the reviewed studies. We have also
surveyed the studies from the perspective of qualifiers of edge computing that include cost, latency, security, location
awareness, and energy efficiency. Based on our extensive literature review, we recommend further research to address the
challenges related to large data volume, information security, compatibility with ultrareliable low-latency communica-
tion, and AI complexity-accuracy trade-offs. It is difficult to directly compare much of the research because experiments
are done on a variety of platforms and with different data sets. However, even with these limitations, detailed comparative
analysis of each data operation presented in this paper can help researchers/health professionals choose the best authen-
tication, data reduction, encryption, classification, or prediction method for a particular edge computing deployment use
case in a health care setting.
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