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Abstract—In this paper, we present the case of utilizing
interference temperature (IT) as a dynamic quantity rather
than as a fixed quantity in an orthogonal frequency division
multiple access (OFDMA) based spectrum sharing systems. The
fundamental idea here is to reflect the changing capacity demand
of primary user (PU) over time in setting the interference power
threshold for secondary user (SU). This type of dynamic IT will
allow the SU to opportunistically have higher transmit power
during relaxed IT period, thereby resulting in higher network
capacity. The cognitive radio network (CRN) considered in this
paper has an underlay network configuration in which the
available spectrum of the PU is accessed concurrently by SU
provided that the interference power at the PU receiver from SU
is under a certain power threshold. This power threshold is set to
maintain and guarantee a certain level of quality of service (QoS)
for PU network. Theoretical expressions for outage probability
and mean capacity for SU network are derived, and validated
with simulation results, and it is observed that utilizing dynamic
IT results in high network performance gains as compared to
utilizing a fixed IT in cognitive radio system.

Index Terms—Cognitive radio, interference temperature,
Rayleigh channel, SINR, outage probability, capacity.

I. INTRODUCTION

The explosive growth of mobile devices over the last decade
has created a lot of stress on the available frequency spectrum
for public use. With more and more devices coming into the
picture, the spectrum is getting more crowded than before.
In the past decade or so, measurement studies on the actual
spectrum have revealed that a large portion of the licensed
spectrum is less utilized than the unlicensed one. These studies
also highlight that this inefficient and inflexible spectrum
allocation leads to the spectrum scarcity [1]–[3]. To overcome
this challenge of overcrowded spectrum, cognitive radio theory
was introduced, where radios in unlicensed spectrum would
exploit the available licensed spectrum opportunistically, and
thereby yield high network efficiency [4]–[8].

In cognitive radio network (CRN), the users of the radio
spectrum are divided into two categories: licensed and un-
licensed users. Depending on the network configuration, the
unlicensed users or the secondary users (SUs) are allowed to
access the spectrum of the licensed users or the primary users
(PUs) either when it is not in use by PU or concurrently with
PU transmissions. The concurrent transmission is allowed, if
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and only if the SUs can maintain a certain interference power
threshold such that it doesn’t affect the quality of service
(QoS) for PU transmission. The spectrum sharing network
with concurrent access of the available spectrum is known
as underlay cognitive network, while the network that allows
spectrum access only during idle time is known as overlay
cognitive network [6], [9]. Moreover, the required interference
power threshold to maintain the certain QoS at PU-Rx is
defined as interference temperature (IT) [10]–[13]. In this
work, we consider the network to be in underlay configuration.

In the underlay network, the SUs adapt their transmit power
to maintain the required IT constraint. To maintain IT, SU
will either adapt its peak or average transmit power [13]–[16].
In [17], Kang et al. have studied and derived the optimal
power strategies for SU to maximize outage and ergodic
capacity under both (peak and average power) constraints.
Similarly, in [18], Srinivasa et al. has considered peak and
average power adaptation to maximize the SU signal to noise
ratio (SNR) and capacity. However, peak power adaptation
protects and guarantees instantaneous interference prevention
at PU, and in many cases, the PU QoS would be limited
by the instantaneous signal to interference plus noise ratio
(SINR) at the receiver. Therefore, in this work, peak power
adaptation was considered, however, it is important to note
that the insights from peak power adaptation will still be valid
even if average power adaptation was considered. This type of
power adaptation scheme requires the knowledge of channel
state information (CSI) at SU-Tx, so that the SU can adapt
their transmit power accordingly. Recent research studies have
shown that this can be achieved by utilizing feedback channels
with acknowledgment/non-acknowledgement (ACK/ NACK)
packet information or by detecting the transition of modulation
and coding schemes (MCS) [19]–[23]. In our work, this job is
accomplished by a central entity known as CBS (central base
station), which periodically senses the CSI information of PUs
and SUs in a CRN. This type of CRN with CBS is also known
as a centralized CRN system [19], [22], [23]. Apart from
sensing CSI, CBS also senses the primary network activity, and
controls the SUs via dedicated sensing and control channels.
However, in reality, the CSI knowledge is not perfect [24] but
since the main aim of this paper is to statistically highlight
the advantages of dynamic IT over fixed IT, we have safely
assumed perfect CSI knowledge at SU-Tx. The system model
in that regard will be discussed in more detail in Section II.

Traditionally, the interference power threshold or IT for
SUs is kept constant, however, some studies, such as [25] has
thoroughly analyzed the concept of interference probability in
a relay assisted CRN, assuming imperfect CSI. In [25], the
authors have quantified the performance of spectrum sharing
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cognitive relay networks in the presence of imperfect CSI with
a metric termed as interference probability. This interference
probability is found to be always equal to 0.75: the probability
that the actual IT is higher than the estimated IT when the
CSI is imperfect. Further, the well-known main requirement of
CRN is to maintain QoS of PUs (legacy users), while aiming at
increasing spectral efficiency of the whole system by allowing
SUs to access the spectrum. However, fixed IT constraint could
be considered a strict requirement for satisfying this QoS of
PUs.

The primary motivation behind this work is to relax IT
constraint dynamically while considering capacity demand
requirement of PUs, hence improving spectral efficiency (i.e.,
increase capacity of SUs) by allowing SUs to opportunisti-
cally transmit at higher power levels. As per our knowledge,
this is the first paper to statistically model the dynamic IT
considering the dynamic PU traffic demand. Utilizing these
dynamic IT settings, the IT for SUs can be relaxed during
less traffic time or ideal time in the PU network, which will
allow the SUs to increase their transmit power and thereby
further improve the overall network performance of CRN. This
dynamic setting and modelling is discussed in more detail in
Section III. In Sections IV and V, derivations for different
performance expressions in general and in high power region
is discussed in detail. The simulation results and discussion
is presented in Section VI, and finally, the conclusion and
future work is mentioned in Section VII. In a nutshell, this
statistical modelling of dynamic IT and its effect on network
performance is the main contribution of this work. In general,
the contributions of this paper can be summarized as follows:

• Theoretical probability density function (PDF) and cumu-
lative distribution function (CDF) expressions for SINR
from variable Poisson distributed capacity demand of a
PU is found and validated with simulation results.

• Theoretical PDF and CDF of dynamic interference power
threshold are derived and checked with simulations.

• Theoretical derivations of outage probability and mean
capacity of SU in general operation region, and in high
power region are found and validated with simulations.

• The performance of CRN with dynamic IT and conser-
vative fixed IT is compared and discussed.

II. SYSTEM MODEL

In this section, the system under consideration is discussed
in detail. The system model is shown in Fig. 1, which consists
of a PU network and N -SUs in an underlay network configu-
ration in which the available primary user spectrum is shared
with N -SUs. Furthermore, it is assumed that the orthogonal
frequency division multiple access (OFDMA) method is em-
ployed in the CRN that allows every PU to access orthogonal
spectrum bands from the available bandwidth, and for each
allocated PU orthogonal frequency band, the SUs will operate
in separate sub-bands of it. This will result in no interference
among SUs, but will cumulatively cause interference on the
PU, whose spectrum is shared by these SUs. The various
channel gains assuming point-to-point flat Rayleigh fading

Fig. 1. System model with N -SUs and a PU link.

channels1 are given as, g1sp = ||h1sp||2, g1ps = ||h1ps||2,
g1ss = ||h1ss||2, and g1pp = ||h1pp||2, where g represents the
channel power gain, h represents the channel transfer function
or channel response (Rayleigh), and subscript p represents PU
while subscript s represents SU. Also, the superscripts 1, . . . , n
present the SU or PU index number, for example g1ss is the
channel between the SUTx1 and SURx1 . Moreover, we denote
the exponentially distributed PDFs of these random variables
as fgsp(x), fgps(x), fgss(x) and fgpp(x). These PDFs are
governed by corresponding rate parameters, which depend on
the mean of the exponential distribution as E(gsp) = 1/λsp,
E(gps) = 1/λps, E(gss) = 1/λss and E(gpp) = 1/λpp.

It is worth to note that the mean values of channel power
parameters in small-scale fading models incorporate the effect
of large-scale fading such as path-loss and shadowing under
the assumption that there are immobile users, i.e., path-loss
and shadowing will be constant2 [26], [27]. Consequently, a
low mean parameter would imply a larger distance between a
PU-Rx and a SU-Tx than a high mean value; the mean value
here refers to the received signal mean power over a distance.
As an example, from Fig. 1, since SU-1 is nearer to PU-Rx
than SU-3, it will have a high mean value (E(gsp

1)) than the
SU-3. Therefore, selection of these rate parameters will take
care of the distance dependency in itself.

Apart from that, we also assume the channels to be flat in
our model. Since our main motivation was to show the network
performance gain of utilizing dynamic IT over fixed IT, traffic
scheduling and access control are not considered in this work.
Moreover, we assume a CRN of single PU with single SU for
our analysis purposes, which can be further extrapolated to
multiple SUs with a single PU case, or multiple PU case with

1 Rayleigh fading model is commonly used channel model for such theoret-
ical studies. Other small-scale channel fading models such as Nakagami and
Rician could be definitely considered, however, the insights and observations
obtained from this study would remain the same.

2Note that the users are assumed to be immobile.
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different number of SUs3. As mentioned in the earlier section,
the centralized CRN [19], [22], [23] has a CBS that controls
the CRN operation by sensing the PU activity periodically via
sensing channels, and sets the dynamic IT for SUs via control
channels. It is also important to highlight here that the CSI
knowledge can not be obtained perfectly in a practical wireless
network, but with this centralized CRN, the CBS is assumed
to have near to perfect CSI by periodic updates. This may
lead to extra overheads in the network but for functionality of
a centralized CRN, a near to perfect CSI is a must.

CBS is the main entity responsible for scheduling user
access, especially if there are multiple SUs. Further, CBS
is expected to constantly monitor PU activity and then ask
SU to immediately adjust its transmit power according to PU
demand4. In addition, the thermal additive white Gaussian
noise (AWGN) in the network is assumed to have circularly
symmetric complex Gaussian distribution with zero mean
and variance as σ2, i.e., CN (0, σ2). Finally, to improve the
readability of this paper, the most frequently used symbols
are described in Table I.

TABLE I
NOTATIONS.

Symbol Description
c Capacity
γp SINR at PU-Rx
γs SINR at SU-Rx
α Continuous random variable for

PU-Rx SINR
αk Discrete random variable for

PU-Rx SINR, where
k = 1, 2, . . . ,∞

ψ Interference plus noise
λp Poisson rate parameter
λxx Channel rate parameter

(exponential rate) with subscript x
can be s or p implying SU or PU

σ2 AWGN variance
Prx Received power at PU-Rx
p Peak transmit power
x Dummy variable

III. MODELLING INTERFERENCE TEMPERATURE FROM
CAPACITY DISTRIBUTION

In this section, we will derive the interference power thresh-
old from the variable traffic demand distribution considering
a CRN system as described in the previous section5. First
of all, the data traffic distribution or the variable capacity
distribution is discrete in nature, and therefore has been

3In case of multi-user scenario, the functionality of CBS becomes critical
as scheduling, channel allocations and users monitoring need to be performed
by the CBS. For example, in this OFDMA-based system, CBS can allow
only one SU to concurrently use the carrier-band with the PU. One can take
insights from this study and carefully incorporate the operation of CBS to
extend it to multi-user scenario.

4In this study, we have assumed that there would be constant monitoring
by CBS. However, there needs to be a periodicity of monitoring. Such period
can be same as the arrival rate of Poisson distribution or further optimized
considering the power efficiency.

5Note that the interference power threshold and interference temperature
(IT) are used interchangeably throughout the paper.

modelled by different available discrete distribution’s [28]–
[32]. However, among those discrete distributions, Poisson
distribution becomes a very strong candidate as it has been
used in telecommunications since the advent of computer
networks, and with proper selection of parameters can be made
to fit to most network traffic models [33], [34]. Also, since
the traffic capacity demand change over time is a discrete
quantity, and the occurrences of the traffic demand events
are independent from each other, the applicability of Poisson
distribution to a network traffic model is further strengthened.
Apart from that, in different scenarios and conditions, Poisson
distribution has been shown to match, and model the traffic
data in a network [29], [30], [35], [36].

Ideally, one can use any of the available continuous or
discrete distributions, but considering the close applicability of
discrete distributions and usage for capacity demand modeling,
Poisson distribution is found to be the best model to represent
the PU capacity demand [28]–[32]. In addition, the insights
provided in this study by modelling capacity demand by
any of the available distributions will remain the same. The
traffic/capacity demand assuming Poisson distribution with
rate parameter as λp is given as,

Pc(xk) =
λxkp
xk!

e−λp , ∀ λp > 0, xk ∈ {0, 1, 2, 3, . . . ,∞}.
(1)

In Poisson distribution, this λp is also the mean parameter,
which in our case represents the mean capacity value.

Now, we will use this Poisson distributed capacity demand
to find SINR distribution, and afterwards from that SINR
distribution, IT distribution is determined. These statistical
random variable transformation are done step by step by
applying well known CDF method [37], [38]. To begin with,
the relationship between instantaneous capacity and SINR is
given as,

c = log(1 + γp), ∀ γp ≥ 0,

where γp represents the instantaneous SINR at PU-Rx6and
c represents the instantaneous capacity in (nats/s)/Hz. Using
transformation of random variables, the probability mass func-
tion (PMF) of SINR at PU-Rx is given as,

P (γp) = P (c)
∣∣
γp=ec−1

=
e−λpλckp
ck!

∣∣∣∣∣
c=log(1+γp)

. (2)

This transformed discrete distribution can be easily ex-
pressed as a continuous distribution [39] as follows,

fγp(x) =
∑
xk∈R

e−λpλ
log(xk+1)
p

log(xk + 1)!
δ(x− xk). ∀ x ≥ 0, (3)

where δ(x) is a dirac delta function. This transformation
from discrete to continuous random variable will save a lot
of effort in computations involving mixed random variable
distributions (continuous and discrete distributions) to derive
the network performance expressions. However, this simple
discrete random transformation needs more careful inspection.

6SINR is usually denoted by γ, but in this paper γp and γs are used to easily
distinguish between the SINR at PU-Rx and SINR at SU-Rx respectively.
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Fig. 2. Comparison of normal Poisson distribution (left) with zero truncated
Poisson distribution (right) for different rate parameter of λp = 0.5, 1, 2.
Here the line plot is used for better visualization.

The SINR at the PU-Rx is the ratio of the received signal
power from PU-Tx to the interference plus noise power, that is
γp = PRxPU/ψ, where ψ represents the interference plus noise
power. Therefore,

ψ =
gppp

γp
,∀ γp = {0, 1, 2, . . . ,∞} ∈ R, (4)

where p is the peak transmit power7. For γp = 0 in (4), ψ
would be undefined, which will lead to an undefined data
distribution. Therefore, to overcome this fallacy, we can either
begin by truncating the PU capacity distribution from Poisson
to zero-truncated Poisson distribution [40]–[42], or we can
truncate the distribution of SINR (γp) itself, which will have
the range of γp = {1, 2, . . . ,∞}, that is γp ∈ R+. Fig. 2 shows
a case of truncating capacity distribution from general Poisson
distribution to a zero-truncated Poisson distribution. One can
observe the increase in the probabilities of all the samples
after truncation with shape remaining unchanged, for example
at xk = 2, λp = 2, the probability is P (x) = 0.2707 and at
the same parameters in zero-truncated Poisson distribution the
probability is P (x) = 0.313. The increase in the probability
is due to the shrinking of the sample space.

In our case, we will proceed with the SINR truncation
method. Since, fγp(x) = 1 for x ≥ 0 and fγp(x) = 0 for
x < 0, hence we can write fγp(x) for the case of x ≥ 0 as,

fγp(x)
∣∣
x≥0 = fγp(x)

∣∣
x=0

+ fγp(x)
∣∣
x>0

,

fγp(x)
∣∣
x>0

= 1− e−λpx.
(5)

Hence, the SINR distribution with support region of γp ∈
R+ will be then given by normalizing (3) by (5), that is,

fγp(x) =
∑
xk∈R+

e−λpλ
log(1+xk)
p

(1− e−λp) log(1 + xk)!
δ(x− xk), x > 0.

(6)

7The peak transmit power of SU and PU is assumed to be the same.
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Fig. 3. Simulation and theoretical PDF and CDF of SINR for λp = 6.

Fig. 3 compares the PDF and CDF generated from the
above theoretical SINR expression with simulations results8,
which are in complete agreement with each other. Once the
SINR distribution at PU is known, the interference plus noise
distribution will be then just a ratio of two random variables,
that is,

ψ =
gppp

γp
=

(
gpp
γp

)
p. (7)

On careful observation, the numerator of this equation has
a random variable gpp, which is exponentially distributed
channel power, while the denominator γp is the SINR random
variable, whose distribution was derived in (6) using statis-
tical transformations from capacity demand. The correlation
between these two random variable is zero, hence, they are
both independent. The only dependency between these random
variable is ψ, which has to be dynamically adjusted. In other
words, the PU is allowed to transmit the data at maximum
power p, so as to have high PU network capacity, while the
SINR derived from the capacity is made dependent on the
wireless channel conditions (gpp) through IT (ψ). This in turn
forces the SUs to adapt their transmit power accordingly with
the dynamic IT set at PU-Rx.

Let PRxPU
γp

= β
α , using the CDF method for ratio of two

random variables [38], [39], the PDF is then given as,

fψ(x) =

∫ ∞
0

α · fPrx,γp(xα, α)dα, (8)

Since, β and α are independent random variables, therefore,

fψ(x) =

∫ ∞
0

α · fPrx(xα) fγp(α) dα,∀ α > 0. (9)

8In simulations, the primarily utilized MATLAB functions are: “poissrnd”
for generating random numbers from Poisson distribution, “ecdf” for empirical
cumulative distribution function and “histogram” for generating probabilistic
plots for the simulation data.
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As the channel is assumed to be Rayleigh distributed,
the channel power distribution will be a scaled exponential
distribution,

fPrx(x) =
λpp
p
e−λppx/p, (10)

where λpp is the channel rate parameter between PU-Tx and
PU-Rx, while p is the peak PU transmit power.

Substituting (10) and (6) in (9),

fψ(x) =

∫ ∞
0

α

(
λpp
p
e−λppαx/p

)(∑
αk∈R+

e−λp

1− e−λp

× λ
log(1+αk)
p

log(1 + αk)!
δ(α− αk)

)
dα,

=
λpp
p

∑
αk∈R+

e−λpλ
log(1+αk)
p

(1− e−λp) log(1 + αk)!

∫ ∞
0

αe−
λppαkx

p

× δ(α− αk)dα,

(11)

Using the property of delta function,
∫ α+ε
α−ε f(t)δ(t − α)dt =

f(α), ε > 0, the expressions reduces to,

fψ(x) =
λpp
p

∑
αk∈R+

e−λpλ
log(1+αk)
p

(1− e−λp) log(1 + αk)!
αke

−λppαkx/p.

(12)
Also, the CDF of interference plus noise is found by

integrating the PDF as,

Fψ(x) =

∫ x

0

λpp
p

∑
αk∈R+

e−λpλ
log(1+αk)
p αke

−λppαkx/p

(1− e−λp) log(1 + αk)!
dx,

=
λpp
p

e−λp

1− e−λp
∑
αk∈R+

λ
log(1+αk)
p αk

log(1 + αk)!

×
∫ x

0

e−λppαkx/pdx.

(13)

On further evaluation, the final CDF expression comes out
to be

Fψ(x) =
∑
αk∈R+

e−λpλ
log(1+αk)
p

(1− e−λp) log(1 + αk)!

[
1− e−λppαkx/p

]
.

(14)

Fig. 4 shows the match between the simulation and the-
oretical result for the PDF derived in (12) for different λp.
Since, the noise is assumed to be Gaussian distribution with
zero mean and variance as σ2, i.e., CN (0, σ2), the interference
plus noise can be considered as total interference threshold or
IT with a constant noise variance σ2 included in it. In simpler
terms, ψ can be regarded as total interference threshold. The
proof that (12) is a valid PDF is given in Appendix A.

So far the first step of deriving the dynamic distribution
of IT for PU-Rx from the variable network traffic demand
(Poisson distributed) has been found, the next step is to
evaluate the SU network performance metrics by deriving and
analyzing outage probability and mean capacity distributions,
which will be the topic of discussion in the next section.
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Fig. 4. Simulation and theoretical PDF of interference plus noise for different
values of λp = 2, 4, 6.

IV. SECONDARY USER OUTAGE PROBABILITY AND MEAN
CAPACITY

In this section, we will derive the outage probability and
mean capacity of SU assuming peak power adaptation at SU-
Tx. The SU transmit power with peak power adaptation [16]
is given as,

PTxSU = min
(
ψ

gsp
, p

)
, (15)

where p is the peak transmit power, gsp is the channel
between SU-Tx to PU-Rx and ψ is the total IT. To make the
mathematical notation’s simpler, we will use Ptx and Prx for
transmit and receiver power at SU, rather than PTxSU and PRxSU .
Therefore, the SINR at SU-Rx is,

γs =
Ptxgss

pgps + σ2
=

Prx
pgps + σ2

, (16)

where gss is the channel power gain between SU-Tx and SU-
Rx, while gps is the channel power gain between PU-Tx and
SU-Rx, and p is the peak power at PU. The mean capacity
expression for SU is therefore,

C̄ = B

∫ ∞
0

log(1 + x) fγs(x)dx, (17)

where fγs(x) is the PDF of SINR at SU-Rx, and B is the
bandwidth. Using integration by parts [43], the expression can
be written as,

C̄ =

∫ ∞
0

1− Fγs(x)

1 + x
dx, (18)

where B is assumed to be 1 Hz and Fγs(x) is the CDF of
SINR or the outage probability. Therefore, to evaluate the
mean capacity, we need to find the outage probability at SU.

Here also, we will do step by step statistical transformation
of random variables to derive γs from Ptx, and then finally
the outage probability Fγs and capacity C. To determine Ptx
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as given in (15), let t = ψ
gsp

= u
v . Then, the CDF of t will be

given as,

FT (x) = Pr

(
u

v
< x

)
= Pr

(
u < vx, v > 0

)
,

=

∫ ∞
0

∫ vx

0

fψ,gsp(uv)du dv.

(19)

Since ψ and gsp are independent random variable, therefore,

FT (x) =

∫ ∞
0

∫ vx

0

fψ(u)dufgsp(v)dv,

=

∫ ∞
0

Fψ(vx)fgsp(v)dv.

(20)

where fgsp(v) is the PDF of the exponential channel power
gain, and Fψ(x) is given in (14). On substituting these terms,

FT (x) =

∫ ∞
0

∑
αk∈R+

e−λpλ
log(1+αk)
p

[
1− e

−λppαkvx
p

]
(1− e−λp) log(1 + αk)!

× λspe−λspvdv,

=
λspe

−λp

1− e−λp
∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!

[ ∫ ∞
0

e−λspvdv

−
∫ ∞
0

e−
(
λppαkx

p +λsp

)
vdv

]
.

(21)

which finally reduces to,

FT (x) =
e−λp

1− e−λp
∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!

(
ηαkx

ηαkx+ p

)
, (22)

where η =
λpp
λsp

. The PDF of t = ψ
gsp

will be then given as,

fT (x) =
e−λp

(1− e−λp)

∑
αk∈R+

λlog(1+αk)

log(1 + αk)!

[
ηαkp

(ηαkx+ p)2

]
.

(23)
Thus, the distribution of Ptx as a minimum function of the

constant p and random variable t is as follows,

Ptx = min
(
ψ

gsp
, p

)
= min (t, p),

FPtx(x) = FT (x) + Fp(x)− FT (x)Fp(x),

= FT (x) [1−H(x− p)] +H(x− p),
where the constant p is expressed as a random variable with
CDF as a Heaviside function H(x − p) and PDF as a Dirac
delta function δ(x− p) [13], [39]. Correspondingly, the PDF
would be given as,

fPtx(x) = fT (x)[1−H(x− p)] + δ(x− p)
= − FT (x)δ(x− p),

(24)

where FT (x) and fT (x) are given in (22) and (23).
From this given Ptx distribution, the next step is to deter-

mine the received power at SU-Rx, that is, Prx = Ptxgss. This
expression is a product of two random variables, one of which
is exponential random variable gss, and the other one is Ptx.

Let Prx = Ptxgss be written as Prx = v1v2 where v1 = gss
and v2 = Ptx. Therefore,

FPrx(x) = Pr(v1v2 ≤ x)

=

∫ ∞
0

∫ x
v2

0

fgss

(
v1 ≤

x

v2

)
fPtx(v2)dv2,

=

∫ ∞
0

Fgss(x/v2)fPtx(v2)dv2,

=

∫ ∞
0

[1− e−λssx/v2 ] fPtx(v2)dv2,

= 1−
∫ ∞
0

e−λssx/v2 fPtx(v2)dv2.

(25)

On substituting (22), (23) and (24) in (25),

FPrx(x) = 1−
∫ ∞
0

e−λssx/v2
[
ft(v2)[1−H(v2 − p)]

+ δ(v2 − p)− Ft(v2)δ(v2 − p)
]
dv2,

= 1−
∫ ∞
0

e−λssx/v2e−λp

(1− e−λp)

∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!

×
[

ηαkp

(ηαkv2 + p)2

]
dv2 +

∫ ∞
p

e−
λssx
v2 e−λp

(1− e−λp)

×
∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!

[
ηαkp

(ηαkv2 + p)2

]
dv2 − e−

λssx
p

+

∫ ∞
0

e−λssx/v2FPtx(v2)δ(v2 − p)dv2,

(26)

which finally reduces down to,

FPrx(x) = 1− e−λssx/p +
e−λp

1− e−λp
∑
αk∈R+

λlog(1+αk)

log(1 + αk)!

× ηαkλssx

p
e
ηαkλssx

p Γ

(
0,
λss(ηαk + 1)x

p

)
,

(27)

where Γ(a, x) is an incomplete Gamma function [44], which
is defined as,

Γ(a, x) =

∫ ∞
a

ta−1e−tdt, ∀ a > 0, x ≥ 0.

Finally, from this distribution of Prx, the distribution of
SINR at SU-Rx will be the ratio of two independent random
variables Prx and pgps + σ2, which can be easily found out
by using the same CDF method. That is,

γs =
Prx

pgps + σ2
. (28)

Let Prx
pgps+σ2 = u

v , therefore,
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Fγs(x) = Pr
(
u

v
≤ x

)
,

=

∫ ∞
σ2

∫ vx

0

fPrx(u ≤ vx)fv(v) du dv,

=

∫ ∞
σ2

(∫ vx

0

fPrx(u ≤ vx) du

)
fv(v)dv,

=

∫ ∞
σ2

FPrx(vx) fv(v)dv.

(29)

Since, v = pgps + σ2 is a scaled and shifted exponential
distribution, while FPrx(vx) was found in (27). Therefore,

Fγs(x) =

∫ ∞
σ2

[
1− e−

λssx
p +

e−λp

1− e−λp
∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!

× ηαkλssvx

p
e
ηαkλssvx

p Γ

(
0,
λss(ηαk + 1)vx

p

)]
× λps

p
e−

λps
p (v−σ2)dv,

=

∫ ∞
σ2

λps
p
e−

λps
p (v−σ2)dv −

∫ ∞
σ2

λps
p
e−

λssx
p

× e−
λps
p (v−σ2)dv +

∫ ∞
σ2

e−λp

1− e−λp

×
∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!

ηαkλssvx

p
e
ηαkλssvx

p

× Γ

(
0,
λss(ηαk + 1)vx

p

)
λps
p
e−

λps
p (v−σ2)dv,

(30)

which can be expressed as,

Fγs(z) = I1 − I2 − I3. (31)

Evaluating these integrals individually,

I1 =

∫ ∞
σ2

λps
p
e−

λps
p (v−σ2)dv = 1. (32)

Here I1 is the PDF that is integrated over its full range
resulting the value to be 1. I2 on the other hand is evaluated
as,

I2 =

∫ ∞
σ2

e−λssx/p
λps
p
e−

λps
p (v−σ2)dv

=
λpse

λpsσ
2

p

∫ ∞
σ2

e−
λssx+λps

p vdv,

(33)

which on further evaluation yields,

I2 =
λps

λps + λssx
e−

λssσ
2x

p . (34)

Lastly, evaluating I3,

I3 =
e−λpλps

(e−λp − 1)p
e
λps
p σ2

∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!

ηαkλssx

p

×
∫ ∞
σ2

ve
ηαkλssvx

p e−
λps
p vΓ

(
0,
λss(ηαk + 1)vx

p

)
dv,

(35)

Which on further evaluation yields,

I3 =
∑
αk∈R+

ηλpsλssαkxe
−λp(e−λp − 1)−1

(λps − ηαkλssx)2(λps + λssx)

× λ
log(1+αk)
p

log(1 + αk)!

[
(λps − ηαkλssx)e−λssσ

2x/p

+ (λps + λssx)

{
eηαkλssσ

2x/p

(
1 +

(λps − ηαkλss)σ2

p

)
× Γ

(
0,

(ηαk + 1)λssσ
2x

p

)
− eλpsσ

2/p

× Γ

(
0,

(λps + λssx)σ2

p

)}]
.

(36)

Therefore, on substituting I1, I2 and I3, Fγs(x) or the
outage probability will be given as in (38), and the proof that
it is valid distribution is given in Appendix B. Furthermore,
substituting (38) in the mean capacity expression that is given
as,

C̄ =

∫ ∞
0

1− Fγs(x)

1 + x
dx. (37)

will result in (39). Unfortunately, there is no closed form
solution for the second integral (I4) of (39), which therefore
needs to be evaluated numerically. Thus far, we have derived
the outage probability and mean capacity of a SU in a CRN
network irrespective of their operable region. However, there
can be a case where the peak power p is very high, so that
during the peak power adaptation at SU-Tx, the final transmit
power (PTxSU ) will always be ψ

gsp
. This region is also known

as high power region [16], and we will analyze this region for
more deeper insights. In the next section, we will derive the
corresponding performance expressions for such region.

V. OUTAGE PROBABILITY AND MEAN CAPACITY IN HIGH
POWER REGION

In high power region, when p >> ψ
gsp

at SU-Tx, the SU
transmit power assuming peak power adaptation is given as,

PTxSU = min
(
ψ

gsp
, p

)
=

ψ

gsp
= t, (40)

which reduces the probability distribution of Ptx to t(x) as
given in (24). Therefore, the probability distribution of Prx as
t = u

v is as follows,

FPrx(x) =

∫ ∞
0

Fgss(x/v)fPtx(v)dv,

=

∫ ∞
0

[1− e−
λssx
v ]

e−λp

1− e−λp
∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!

×
[

ηαkp

(ηαkx+ p)2

]
dv,

(41)
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Fγs(x) = 1− λpse
−λssσ

2x
p

λps + λssx
+
∑
αk∈R+

ηλpsλssαkxe
−λp(1− e−λp)−1

(λps − ηαkλssx)2(λps + λssx)

λ
log(1+αk)
p

log(1 + αk)!

[
(λps − ηαkλssx)e−λssσ

2x/p + (λps

+ λssx)

{
eηαkλssσ

2x/p

(
1 +

(λps − ηαkλss)σ2

p

)
Γ

(
0,

(ηαk + 1)λssσ
2x

p

)
− eλpsσ

2/pΓ

(
0,

(λps + λssx)σ2

p

)}]
(38)

C̄ =

∫ ∞
0

λpse
−λssσ

2x
p

(λps + λssx)(1 + x)
dx−

∫ ∞
0

∑
αk∈R+

(
ηλpsλssαkxe

−λp

(λps − ηαkλssx)2(λps + λssx)(1− e−λp)(1 + x)

λ
log(1+αk)
p

log(1 + αk)!

×
[
(λps − ηαkλssx)e−λssσ

2x/pdx+ (λps + λssx)

{
eηαkλssσ

2x/p

(
1 +

(λps − ηαkλss)σ2

p

)
Γ

(
0,

(ηαk + 1)λssσ
2x

p

)
− eλpsσ

2/pΓ

(
0,

(λps + λssx)σ2

p

)}])
dx

C̄ =
λps

λss − λps

[
eλpsσ

2/pΓ

(
0,
λpsσ

2

p

)
− eλssσ

2/pΓ

(
0,
λssσ

2

p

)]
+ I4

(39)

which simplifies down to

FPrx(x) = 1− e−λp

1− e−λp
∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!

[
1− ηαkλss

p

× xeλssηαkx/p · Γ
(

0,
λssηαkx

p

)]
.

(42)

Thus, the outage probability will be,

Fγs(x) =

∫ ∞
σ2

FPrx(vx)fv(v)dv,

=

∫ ∞
σ2

[
1− e−λp

1− e−λp
∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!

×
(

1− ηαkλssvxe
λssηαkvx/p

p
Γ

(
0,
λssηαkxv

p

))]
× λps

p
e−

λps
p (v−σ2)dv,

(43)

= 1− e−λp

1− e−λp
∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!
− e−λp

1− e−λp

×
∑
αk∈R+

λ
log(1+αk)
p ηαkλssx

log(1 + αk)!

1

(λps − ηαkλssx)2

×
[
λps − ηαkλssx+ λpse

λpsσ
2/pΓ

(
0,
λpsσ

2

p

)]
,

(44)

which on further evaluation reduces to,

Fγs(x) =
∑
αk∈R+

λ
log(1+αk)
p ηαkλssx

log(1 + αk)!

1

(λps − ηαkλssx)2

×
[
λps − ηαkλssx− λpseλpsσ

2/pΓ

(
0,
λpsσ

2

p

)
+ λpse

ηαkλssxσ
2/p

(
1 +

(λps − ηαkλssx)σ2

p

)
× Γ

(
0,
ηαkλssxσ

2

p

)]
.

(45)

Finally, to determine the mean capacity, we will substitute
(45) in (37). Unfortunately, the expression also doesn’t have
a closed form solution. Therefore, the expression has to be
evaluated numerically.

In next section, we will validate and discuss all these derived
expressions with simulation results in detail.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we will compare the analytical expression
derived in the previous sections by comparing them with
Monte Carlo Simulations in MATLAB R©, and numerical eval-
uations in MATHEMATICA R©9. Furthermore, instantaneous
and mean capacity, and outage probability of a dynamic IT
based CRN, are compared with a fixed IT based CRN to show
the advantages of setting a dynamic IT over fixed IT. The

9It is highly recommended to use MATHEMATICA for numerical evalu-
ation involving high powers as it provides excellent numerical precision at
these high power values.



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2020 9

0 5 10 15

x

0.2

0.4

0.6

0.8

1
F

s(x
)

Simulation
Theoretical

p=10 dB

p=-10 dB

p=0 dB

Fig. 5. Simulation and theoretical outage probability in general region of SU
at different peak power values of p = −10, 0,+10 dB.

different distance dependent rate parameters used in the sim-
ulation were selected for illustrative purposes, but depending
upon different scenario’s (environment and distance), different
values can be used. Nevertheless, the selection of parameters
are inconsequential to the insights provided by choosing any
set of rate parameters. For Rayleigh fading channels, the mean
values were selected as E(gsp) = 1/λsp = 2, E(gps) =
1/λps = 3.3, E(gss) = 1/λss = 5 and E(gpp) = 1/λpp = 4,
while the peak power was chosen depending on the analysis
and case in hand. Also, the noise power was set to be σ2 = 1.
These different parameters are also summarized in the Table
II.

TABLE II
DIFFERENT SIMULATION PARAMETERS.

Parameter Value
E[gsp] 2
E[gps] 3.3
E[gss] 5
E[gpp] 4
σ2 1
p -10,0,10 dB (depending on the given case)
λp 1,2...,6 (depending on the given case)

First, we start with the simulation of the outage probability
expression given in expression (38). In this case, the capacity
demand (Poisson distribution) at PU is fixed at λp = 2, while
peak power is chosen to be −10, 0 and +10 dB. Fig. 5
shows the result of comparison between the simulation and
theoretical expression that are in total agreement. Intuitively,
high transmit power will better accommodate the capacity/data
traffic demand than the low transmit power, which is reflected
in the outage probability plot of Fig. 5 with less outage values.
As an example, one can observe that at every SINR value in
Fig. 5, the outage probability is higher for low peak power
value as compared to higher peak power value.

Next, we fix the peak transmit power at 10 dB and analyze

0 5 10 15 20

x

0

0.2

0.4

0.6

0.8

1

F
s(x

)

Simulation
Theoretical

2 3 4 5
0.8
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0.9

0.95

p
=3

p
=2

p
=4

Fig. 6. Simulation and theoretical outage probability in general power region
of SU at λp = 2, 3, 4 .
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0.7
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Fig. 7. Simulation and theoretical mean capacity of SU at p = 5, 10, 15 dB,
while varying the λp from 1 to 5.

the effect of changing capacity/data traffic demand of PU on
outage probability. The changing capacity demand is reflected
in the Poisson rate parameter and the values selected in this
scenario are λp = 2, 3 and 4. It can be intuitively inferred that
a high capacity demand from a PU should set the dynamic
IT very tight, thereby restricting the transmit power for SU.
Correspondingly, a low capacity demand from a PU should
relax the IT, allowing the SU to opportunistically increase their
transmit power. This phenomenon can be easily seen from Fig.
6, where for any SINR value, the outage in case of λp = 4
is more than λp = 3, and that is even more than the case of
λp = 2. In case of high power region, the expression given in
(45) will yield similar inferable results.

Moving forward, first the effect of varying λp (capacity
parameter) at fixed SU transmit power levels, and then the
effect of changing peak power at various fixed λp will be
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Fig. 8. Simulation and theoretical mean capacity of SU at different values of
λp = 2, 3, 4 while varying the peak power from 5 to 10 dB.
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Fig. 9. Simulation and theoretical mean capacity of SU at different values
of λp = 2, 3, 4 while varying the peak power from −10 to 10 dB in high
power region.

evaluated and analyzed for the mean capacity expression
generated for SU in (39). For the first case, we select three
peak power levels of p = 5, 10, 15 dB, while λp is varied
from 1 to 5. As one may expect, high peak transmit power
will allow the SU to have higher capacity as compared to low
peak transmit power, however, as the λp increases (high PU
capacity demand), the dynamic IT that will be set by CBS for
SU will become more tighter. This tight IT will therefore limit
the SU transmit power, ultimately resulting to a lower mean
capacity. This interesting phenomenon can be easily observed
in Fig. 7 in which the simulation and theoretical results are
plotted.

In the next step, the peak power is varied from 5 to 10 dB
and the mean capacity is evaluated at three different values
of λp as 2, 3 and 4. As expected, increasing peak power of

1 2 3 4 5
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Fig. 10. Simulation and theoretical mean capacity of SU at p = 5, 10, 15
dB, while varying λp from 1 to 5 in high power region.
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Fig. 11. Comparison of mean capacity performance with dynamic IT and
fixed IT of ψ = −10 and −5 dB.

SUs at relaxed dynamic IT (small λp) will increase the SU
mean capacity than at low SU peak power with high λp.
This mechanism is due to the dynamic setting of IT, which
is governed by the PU capacity changes (capacity demand).
Fig. 8 shows this resulting plots, where the network dynamics
(traffic data demand) is reflected in the setting of dynamic IT
and which in turn gets reflected in the mean capacity. The
same is also inferred in the high power region for which the
mean capacity expressions are evaluated numerically. Fig. 9
and Fig. 10 show the corresponding mean capacity plots for
SU in the high power region.

Finally, we will simulate and compare the case of using
dynamic IT with the fixed IT values set at −10 and −5 dB
values for mean and instantaneous capacity performance, with
outage probability. One important point to note here is that
these set values for fixed IT are pre-chosen to be very tight, and
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Fig. 12. Comparison of instantaneous capacity performance with dynamic IT
and fixed IT of ψ = −10 and −5 dB.

represent the worst case scenario. In this case, the peak power
is fixed at 10 dB, and λp is varied from 1 to 6 to generate the
dynamic IT, and thereby the mean capacity. Fig. 11 shows the
resulting plot of such a case, and it can be observed that the
mean capacity achieved by a SU with dynamic IT is higher
than that with the fixed IT one as it takes care of the capacity
variation of PU. In other words, a smaller value of λp will relax
the IT, thereby allowing SU to have high transmit power and
therefore, high mean capacity. On the other hand, a high value
of λp will reflect a tight IT value for SU, thus limiting the SU
transmit power which finally results in low mean capacity.

In the second case, we will compare the simulated instan-
taneous capacity performance with dynamic IT, and with the
fixed IT values set at −10 and −5 dB. Fig. 12 shows the result
for 30 time flops, and it can be clearly observed that setting
dynamic IT leads to better instantaneous network capacity than
the fixed IT case with the same reasoning as in the previous
case.

In the last case, we will compare the simulated outage
probability of SU with respect to dynamic IT and fixed IT
kept at −10 and −5 dB with λp set at 1. Please note that the
effect of varying λp on outage probability is already shown
in Fig. 6. As expected with the setting of dynamic IT, the
outage probability would be less than the fixed IT case at
any given SINR value, which can be easily observed from
Fig. 13. Also, one can observe that the outage probability in
case of stricter IT, which is kept at -10 dB, is more than the
case with fixed IT of -5 dB. Therefore, the positive effects of
setting IT as a dynamic value can be easily seen on the outage
probability, and on the mean and instantaneous capacity of SU,
which could be easily leveraged in designing spectrum sharing
systems for future.

VII. CONCLUSION AND FUTURE WORK

In this work, we have statistically modelled the dynamic
interference temperature or interference power threshold from
the variable capacity demand of PU in a cognitive radio
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0
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Fig. 13. Comparison of outage probability with dynamic IT with fixed IT
kept at ψ = −10 and −5 dB.

system. The PU capacity demand variation over time was
assumed to follow Poisson distribution, and consequently,
using statistical transformations of random variables, the dis-
tribution of SINR, and finally IT distribution was found and
validated. Theoretical expressions for outage probability and
mean capacity for SU in the general power region, and in the
high power region were derived and verified with simulation
results. Finally, we analyzed the effect of utilizing a dynamic
interference power threshold on the mean and instantaneous
capacity, and on the outage probability. We found that the
dynamic IT substantially improves the network performance
as compared to a fixed IT based cognitive radio system.
If obtained, the asymptotic analysis of capacity and outage
probability expressions in general, and in high power region
could provide valuable insights. These are considered as future
work.

APPENDIX A
PROOF OF VALID PDF

For (12) to be a valid PDF, it should satisfy these two
necessary conditions,
• fψ(x) ≥ 0, ∀x.
•
∫ +∞
−∞ fψ(x)dx = 1.

where fψ(x) is given as,

fψ(x) =
λpp
p

∑
αk∈R+

e−λpλ
log(1+αk)
p

(1− e−λp) log(1 + αk)!
αke

−λppαkx/p.

The first property is easy to prove. The second property can
be proved as follows,∫ ∞

0

λpp
p

∑
αk∈R+

e−λpλ
log(1+αk)
p αk

(1− e−λp) log(1 + αk)!
e−λppαkx/pdx,

=
λpp
p

∑
αk∈R+

e−λpλ
log(1+αk)
p αk

(1− e−λp) log(1 + αk)!

∫ ∞
0

e−λppαkx/pdx,
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=
e−λp

1− e−λp
∑
αk∈R+

λ
log(1+αk)
p

log(1 + αk)!
.

Using Taylor series, the expression reduces to,∫ ∞
0

fψ(x)dx =
e−λp

1− e−λp
(eλp − 1),∫ ∞

0

fψ(x)dx = 1.

Hence, it is a valid PDF.

APPENDIX B
PROOF OF VALID CDF

For (38) to be a valid CDF it should satisfy these two
necessary conditions,
• lim
x→−∞

Fγ(x) = 0.

• lim
x→∞

Fγ(x) = 1.

where Fγ(x) is given in (38). Now, at x→ 0 the second term
in (38) will reduces to,

λps
λps + λssx

e−
λssσ

2x
p = 1. (46)

while the third term is 0. Therefore Fγ(x) = 0 as x → 0.
Evaluating at x→∞,

e−
λssσ

2x
p = 0,

Γ(0,∞) = 0.
(47)

Therefore, the second and third term in (38) becomes 0, and
Fγ(x) will be 1. Hence the expression is a valid CDF.
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