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Abstract—In this article, using the stochastic geometry, we de-
velop a tractable uplink modeling framework for the outage proba-
bility of the multitier millimeter wave (mmWave) cellular networks.
Each tier’s mmWave base stations (BSs) are randomly located
and they have particular spatial density, antenna gain, receiver
sensitivity, blockage parameter, and pathloss exponents. Our model
takes account of the maximum power limitation and the per-user
power control. More specifically, each user, which could be in
line-of-sight (LOS) or non-LOS to its serving mmWave BS, controls
its transmit power such that the received signal power at its serving
BS is equal to a predefined threshold. Hence, a truncated channel
inversion power control scheme is implemented for the uplink of
mmWave cellular networks. We derive closed-form expressions for
the signal-to-interference-plus-noise-ratio (SINR) outage proba-
bility for the uplink of the multitier mmWave cellular networks,
which we later degrade to the single-tier network. Furthermore,
we analyze the case with a dense network by utilizing the simplified
model, where the LOS region is approximated as a fixed LOS disk.
The results show that imposing a maximum power constraint on
the user significantly affects the SINR outage probability in the
uplink of mmWave cellular networks.

Index Terms—Millimeter wave (mmWave), power control,
stochastic geometry, truncated channel inversion, uplink
communication.

1. INTRODUCTION

FUNDAMENTAL requirement for the 5G-and-beyond

mobile networks is the radical increase in data rate. Recent
studies have identified massive multiple-input—-multiple-output
(MIMO), extreme network densification, and increased band-
width as the key technologies toward meeting this require-
ment [1]. The millimeter wave (mmWave) frequencies (ranging
from 30—300 GHz) offers a large available bandwidth thus,
making them attractive for the 5G mobile networks [1]-[3].
Meanwhile, the mmWave band has long been considered ill-
suited for the cellular communication due to the excessive
pathloss and the poor penetration through materials such as
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concrete and water. Recent capacity studies and survey mea-
surement on mmWave technologies in [3]-[6] have shown its
great promise for 5G urban small cell deployments. The recent
advances in low-power CMOS RF circuit and the smaller wave-
length associated with the band have further substantiated this
promise. The later also makes it viable to have more miniaturized
antennas within the same physical area of the transmitter and
receiver [2], [6]. Furthermore, with a large antenna array, the
mmWave network can apply beamforming at the transmit and
receive sides to provide array gain that compensates for the
pathloss [7]. The directionality gained from beamforming will
lead to a reduction in interference [5]. Hence, a mmWave spec-
trum holds great potential for providing the high data rate (Giga-
bits range) expected in the upcoming 5G cellular networks [8].

Modeling and analysis of cellular networks by using stochas-
tic geometry have recently received significant attention due to
its high accuracy and tractability. In this approach, the network
topology is abstracted to a point process for ease of modeling and
analysis. Earlier works in this area were mainly focused on the
conventional ultrahigh-frequency (UHF) cellular networks [9]-
[19]. In the pioneering work on using the stochastic geometry
for cellular networks [9], it was shown that the stochastic model
provides a lower bound to real cellular deployment. The work
in [9] was based on the downlink of cellular networks with the
single-slope pathloss model. This has been extended by consid-
ering a multislope pathloss model in [10] and [11], the multitier
cellular networks in [12]-[14], the single-tier uplink cellular
networks in [15], and the multitier uplink cellular networks
in [16]-[18].

The stochastic geometry framework developed for the UHF
networks do not directly apply to the mmWave networks due
to blockage effects that they suffer from and the much different
pathloss model. Furthermore, directional beamforming is fun-
damental in the design of the mmWave cellular networks. The
authors in [8] and [20]—[24] have analyzed the mmWave cellular
networks by using the stochastic geometry framework with the
blockage effect, realistic pathloss model and the beamforming
gain incorporated in their model. In particular, [8] pioneered the
research work on the downlink of mmWave cellular networks
by leveraging on an earlier work in [25], which characterized
the blockage parameter by some random distribution. Further-
more, the proposed analytical framework in [8] also captures
the significant difference between the non-line-of-sight (NLOS)
and line-of-sight (LOS) pathloss characteristics. The work in [8]
has been extended to the downlink multitier mmWave cellular
networks in [20], base station (BS) cooperation in [21] and the
uplink single-tier mmWave cellular networks in [22]-[24].

The uplink analysis for both the conventional UHF cellular
networks and the mmWave cellular networks are deemed to
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be quite involved as compared to the downlink analysis due
to the per-user power control and the correlation among the
interferers [16]. The former is due to the fact that an interfering
user could even be closer to a reference mmWave BS than the
user that is tagged to the reference mmWave BS. Furthermore,
regarding mmWave cellular networks, measurements showed
that mmWave signals propagate with a pathloss exponent of
2 in LOS paths and a much higher pathloss exponent with
additional shadowing in NLOS paths [3], [4]. This poses a
further challenge since the difference in pathloss exponents
could results in excessive interference from NLOS users when
the per-user power control is implemented. Hence, power control
must be implemented with a constraint on the maximum user
transmit power in order to mitigate the interference. On the
other hand, the correlation among the interferer results from the
implementation of the orthogonal allocation scheme that does
not allow for a reuse of a channel resource within the same
cell, i.e., the coupling of the mmWave BS and served user-per
channel point processes [15], [16]. For analytical tractability,
various generative models have been proposed in [15]-[17] and
[22]-[24] to approximate the spatial distribution of interferers
in the uplink of UHF and mmWave cellular networks.

In this article, we present a stochastic geometry framework for
modeling and analyzing the uplink of a multitier mmWave cel-
lular network. Similar to the earlier works in this area [15]-[17],
[22]-[24], we rely on some approximation so as to maintain an-
alytical tractability. Notably, we partially ignore the correlation
among the interfering users. Our model captures the correlation
between the interfering users and the reference mmWave BS,
which serves the typical user, but it ignores the correlation
among the interfering users. As evidence from [15]-[17], this
approximation holds true for the uplink of both the single- and
multi-tier UHF cellular networks. The accuracy of this approach
is validated via Monte Carlo simulations. We here extend the
work in [24], which is based on a single-tier mmWave network
and does not take into account the maximum transmit power
of the user. Our proposed framework takes into account the
limitation in the user transmit power, the per-user power control
and the cutoff threshold for the power control. We compare the
findings of our analysis with that from [24]. The comparison
reveals that our analysis provides several new insights that can be
leveraged for designing the mmWave networks more accurately.
The main contributions of this article are summarized as follows.

1) We present a stochastic geometry framework for
the signal-to-interference-plus-noise-ratio (SINR) outage
probability in the uplink of the multitier mmWave cellular
networks. The model takes into account the limitation in
the transmit power of the user, and the network-defined
per-user power control and the cutoff threshold. The mo-
tivation for the multitier model comes from the fact that the
single-tier model fails to capture the realistic network de-
ployment that include varied blockage size and intensity,
varied BS beamforming gain, varied receiver sensitivity,
and multiple dominant LOS and NLOS pathloss exponents
over the entire network. We derive a closed-form expres-
sion for the SINR outage probability in multitier mmWave
networks.

2) We present the asymptotic dense network analysis of the
SINR outage probability in multitier mmWave cellular
networks. The asymptotic analysis leverage on approxi-
mating an intricate LOS function as a step function.

3) The analytical derivations are verified via Monte Carlo-
based simulations. Results show that the maximum power
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constraint significantly affects the SINR outage probabil-
ity. Furthermore, contrary to the SINR outage of UHF
networks, which is nonincreasing in the cutoff threshold,
the SINR outage probability in mmWave networks could
increase over some range of cutoff thresholds for some
mmWave BS density, LOS and NLOS pathloss exponents,
and blockage parameter.

The rest of this article is organized as follows. The system
model of the uplink of a multitier mmWave cellular network
with truncated channel inversion power control is presented in
Section II. In Section III, the uplink modeling framework for the
multitier mmWave cellular network is presented. In Section I'V,
we utilize a simplified system model to analyze the asymp-
totic behavior and performance in dense mmWave networks.
Numerical and simulation results are presented in Section V.
Finally, Section VI concludes this article. A preliminary version
of this work has been reported in [26]. Herein, we have presented
the distribution of the transmit power and the SINR outage
probability in the uplink of a multitier mmWave cellular network
with truncated power control. Furthermore, the asymptotic dense
network analysis have been derived for the multitier mmWave
cellular networks.

II. SYSTEM MODEL

A. Network Model

We consider the uplink of a K -tier mmWave cellular network
and focus on the SINR experienced by outdoor users served by
outdoor mmWave BSs. Each tier’s BSs are randomly located
and they have particular spatial density, antenna gain, receiver
sensitivity, blockage parameter, and pathloss exponents. The
outdoor BSs of each tier are spatially distributed in R? according
to an independent homogeneous Poisson point process (PPP)
Oy, with density 1. The users locations (before association)
are assumed to form a realization of homogeneous PPP ® with
density A,. It is assumed that the density of the users is high
enough such that each BS will have at least one user. Each
BS serves a single user, which is randomly selected from all
the users located in its Voronoi cell by using a round-robin
scheduler. As in [15]-[17], [19], and [22]-[24], we assume
that the active users also form PPP even after associating just
one user per BS. Note that this approximation only partly ig-
nores the correlation imposed by the system model, i.e., the
coupling of the BS and served user point processes. The cor-
relation between the reference mmWave BS and the typical
user is captured in the derivation of the outage probability in
Sections IIT and IV.

Similar to [21], each tier in the mmWave network is character-
ized by a nonnegative blockage constant 35, fork € {1,..., K}.
The parameter Sy, is determined by the average size and density
of blockages in that tier and where the average LOS range
is given by /3% [8], [21], [25]. The probability of a commu-
nication link in the kth tier with length » being an LOS is
P(LOS}) = e 77, while the probability of a link being NLOS
is P(NLOS) = 1 — P(LOSg). The LOS and NLOS links of
the kth tier have different pathloss exponents denoted by /% and

o/fv, respectively, Vk € {1,..., K}.

B. Receiver Sensitivity and Truncated Outage

We assume that all users have an equal maximum trans-
mit power P,. Furthermore, all mmWave BS in the kth tier
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TABLE I
PROBABILITY MASS FUNCTION OF THE DIRECTIVITY GAIN IN AN
INTERFERENCE LINK OF THE jth TIER [25]

v 1 2 3 4
a% GZI}angjax Glg}axGZjin Glr)x}inG?ax Gbmjintin
j Cri € Crj Crj Crj
v R | E0-g0) [0-Fhgt | - 3H0 -5t

have the same receiver sensitivity, which is denoted by pF . .
The received signal at the mmWave BS must be greater than
the receiver sensitivity p¥ . for successful transmission in the
uplink channel. Hence, each user (with either LOS or NLOS
link to its serving mmWave BS) associated with the kth tier
adjusts its transmit power such that the average received signal
at its serving mmWave BS is equal to a predefined threshold
ok, where pf > pF. . Moreover, as a result of the maximum
transmit power constraint, users utilize a truncated channel
inversion power control scheme, where the transmitters com-
pensate for the pathloss in the link to the receiver to keep
the average received signal power to the threshold pY. Any
user-mmWave BS connection that requires a transmit power
that exceeds P, for the pathloss inversion will not be es-
tablished, hence, such a connection experiences a truncation
outage [16].

C. Beamforming Gain

For analytical tractability, we assume that all users and BSs
are equipped with directional antennas with a sectorized gain
pattern. The main lobe gain, side lobe gain, and beamwidth
of the users are G'*%, GTi“, and (;, respectively, while the
corresponding parameters of the kth tier BS antennas are G},

};‘}J“, and (., respectively. We consider that based on channel
estimation, the reference BS in the jth tier and the typical user
adjust their beam steering angles to achieve the maximum array
gains. As a result, the total directivity gain of the desired signal
is G; = GGy, Since the underlying PPP is isotropic in
R2, we model the beam directions of the interfering link as a
uniform random variable on [0, 27]. Furthermore, the directivity
gain in the interference link G7 (interference experienced at the
reference BS in the jth tier) can be approximated as discrete
random variable whose probability distribution is given as a/
with probability b/ (v € {1,2,3,4})[25], where a/ and b7, are
defined in Table I.

In general, the kth tier is characterized by a set of param-
eters Vy whose element include the kth tier’s BS density Ay,
blockage parameter Jj, cutoff threshold p¥, main lobe gain

maxgide lobe gain G", beamwidth (., LOS pathloss
exponent o, and its NLOS pathloss exponent o, such that
Vk: = {)"ka BIW p’ga G;;Illgaxa g]lgin7 CTkH aIZ7 O/f\]} Vk = 17 LR K.

III. UPLINK OF MULTITIER MMWAVE CELLULAR NETWORKS

In this section, we develop our framework model for the
uplink of a multitier mmWave cellular network. In particular, we
present the mmWave transmission power analysis and the SINR
outage probability analysis for the multitier network, which we
later degrade to the single-tier network.

A. Distribution of the Transmit Power in the Uplink of
Multitier mmWave Cellular Networks

Considering the mmWave cellular network with the truncated
channel inversion scheme, each user, which could be in LOS or

NLOS to its serving mmWave BS will transmit with different
power in order to invert the pathloss toward its serving BS. As
a result of the truncation channel inversion, not all users will be
able to communicate in the uplink channel. In particular, given
the cutoff threshold for the kth tier p’g, LOS and NLOS users lo-

cated at distances greater than (P, /pF)Y/*% and (P, /pk)'/*~,
respectively, from their associated mmWave BS are unable to
communicate in the uplink direction due to insufficient transmit
power. Hence, in addition to the fact that the whole user set is
divided into a subset of LOS and NLOS users based on their
association with their serving mmWave BS, the LOS and NLOS
user sets in the kth tier are further divided into a nonoverlapping
subset of active users and inactive users. The distribution of the
transmit power of a typical user associated with the jth tier is
obtained from the following theorem.

Theorem II1.1: In a K-tier mmWave cellular network with
truncated channel inversion power control where the kth tier
is distinguished by the set Vi, Vk =1,..., K, i.e., its density
Az, blockage parameter Sy, cutoff threshold pf, antenna pa-
rameters, Gp*%, g;;n, and (., LOS pathloss exponent a’z
and its NLOS pathloss exponent a%;, the PDF of the transmit
power of a typical active user in the uplink of the jth tier is
given by

>y Ak (p)

e Ei;lAb(n%) (1)

ij (p) =
_yK Py
1—e¢e Za:lAa(ﬂ,)
where
1
- 2wk, Sl AL )E
)"k(p):ﬂ.ikk L oe k<”J°)
ok j2/af
LPo
1
2mhy -1 o (&) N
— S |1 () )
ok ph N
2w -8 i aik rxik
Ar(y) = 72 1 —e kY L+ Bryr | | +mhgy N
k
1
27 ok —+
_ 7/;2]@ 1_67514/ N (1+Bkyalfv> (3)
k
and y is a dummy variable in (3).
Proof: See Appendix A |

The dth moment of the transmit power of a user in the jth tier

is given as
K -
51 Popd > k1 A:(P)
E[P]] - o KA Py
1— e_ 2a=iha <g>

Furthermore, the truncation outage probability in the uplink of
mmWave cellular networks for the jth tier can be obtained as

0l =¢ i (%), )

For a single-tier mmWave network,' the distribution of the
transmit power of a typical user is obtained from the following
corollary.

e Zoms bo <i> dp. (4)

"Note that for all the parameters in the single-tier network, we have removed
the subscript/superscript k used to distinguish the kth-tier parameters in a
multitier network.
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Corollary III.1: In mmWave cellular networks with trun-
cated channel inversion power control and cutoff threshold p,,
the probability distribution function (PDF) of the transmit power
of a typical user in the uplink is given by

Ap)e A®)
Fop) = o S 0sp<h ©
Jo " My)e W dy
where
1
Mp) = e ()
apps’
27 p N
+ P (1—65(»0) ) (7)
Qanpo'
and
1
27T _g(2)\7E p\ L
Alp)=—- 1|1 8(%) 1+5()
(®) p? ( Po

P\ 2 <P>N
+ A (Po) 7 < e <1+,B P .

®)
Proof: The proof follows directly from proof of the multitier
mmWave cellular networks. |

Note that 1 — e7¥(1 + y) is strictly increasing in y for y > 0,
hence, the first term of A(p) in (8) is greater than the third
term and A(p) is strictly positive for all BS density A, block-
age parameter (3, cutoff threshold p,, and pathloss exponent
an > ar > 0. Consequently, increasing the cutoff threshold
Po leads to increase in the truncation outage probability as long
as ay > ay. In other words, the higher the cutoff threshold,
the poorer the mmWave network performance in terms of the
truncation outage. As we will show in the later section, a low
cutoff threshold could actually deteriorate the mmWave network
performance in terms of the SINR outage probability. Hence, it
is essential to manage the tradeoff between SINR outage and
truncation outage probabilities using the cutoff threshold. On
another note, by expanding (8), it can be seen that increasing
the blockage parameter value S leads to a reduction in A(p) for
fixed mmWave BS density A, cutoff threshold p, and pathloss
exponent iy > « .. Thus, the truncation outage probability also
increases with increasing blockage parameter 3. Increasing the
blockage parameter implies decreasing the average LOS range,
and hence, we have more NLOS paths requiring a much higher
transmit power to meet the receiver sensitivity requirement.
Regarding the expectation of the user transmission power, i.e.,
the average user transmission power, it is not straightforward
to gain insights. However, from (7), we expect the plot of the
average transmit power to be characterized from the LOS-based
average transmit power and the NLOS-based average transmit
power. We validate this observation later in the numerical results
section.

B. SINR Outage Probability

For an active typical user, the SINR at its connected BS in the
jth tier (termed as the reference mmWave BS) can be written as

AR
2 K 21 ®)
0%+ D ket D2osez, P2l9:?GZL(D>)

where pJ is the long-term average received signal power (nor-
malized by G;) due to the truncated channel inversion power

SINR; =
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control, Zj, is the set of interfering users associated with a BS in
the kthtier, L (D, ) is the pathloss from the interfering users to the
reference BS, o2 is the noise power, and Gg is the directivity gain
on an interfering link. To help with the analytical tractability, we
model the small-scale fading g, as a Nakagami random variable
with parameter N for both the LOS and NLOS [27].2

The SINR outage probability O? is the probability that the
instantaneous SINR experienced at the reference mmWave BS in
the jth tieris less than the target SINR 6;,i.e., O = P(SINR; <
0;).> Given that the average received signal at any of the BSs
in the jth tier is equivalent to the cutoff threshold of the jth tier
represented by p?, the SINR outage probability of the jth tier
can be expressed as

P(SINR; < 6;)

K
=P {pz;|go|29j <9 (o? +2 (L + Iﬁ)) } (10)
k=1
where I¥ and I% are the aggregate interference from LOS and

NLOS users of the kth tier, respectively. Note that 7 and I
represents the LOS and NLOS cotier interference, respectively,
and I¥ and I%, Vk # j denotes the LOS and NLOS cross-tier in-
terference respectlvely Noting that |g,|? is normalized gamma
random variable with parameter N, we have the following
approximation:

P{gOF (o +ZIL+ZIN> pﬂgg}

L s el

pZ,GJ
N nn
(_1)n+1< )Etb |: _ % (
n e

Y Y N)}

pogJ

M= M=

(1)

N 75"740'2
”(n)e Hﬁlf(sn)Hﬁlg(sn)
k=1 k=1

where s = ;ig’ and 7= N(N!)"~. (a) follow from the
fact that |go|? is a normalized gamma random variable
with parameter N and the fact that for a constant v > 0,
the probability P(|go|?> < ) is tightly upper bounded by
[1 — exp(—yN(N1)~~ )] [28]. Furthermore, the expectation
is with respect to the random variables f and / ]’%, which are
approximated to be independent. (b) follows from the binomial

theorem and the assumption that V is an integer, and L and
L T%, denote the Laplace transforms of the random variables 17

and I%,, respectively.

As mentioned earlier, the location of the interfering users do
not create a PPP as a result of the correlation among the users
from the channel assignment process. The interfering users are
thus better modeled by using soft-core processes, which can

2To maintain completeness, all the simulations utilize Nakagami random
variable with parameter /N for LOS and Rayleigh fading for NLOS.

3We consider that each of the tiers has its own SINR threshold which is
represented by 6.
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capture such correlation [29]. However, most soft-core processes
lack analytical tractability [30], [31], thus making the expression
for the Laplace transforms of the aggregate LOS and NLOS
interference, £ I* and £ 1% respectively, unobtainable. Hence,
we approximate the location of the interfering users with a PPP.
Note that the approximation has been shown to be accurate for
the UHF network when the correlation among the interfering
nodes and the reference receiver is captured [15], [16]. Our
model here also captures this correlation. The accuracy of our
assumption will be verified later through simulations. Based
on the PPP approximation, and the independent and identical
distributed transmit power for the set of interfering users in the
uplink channel, the SINR outage probability of a typical user in
the jth tier of mmWave cellular networks can be obtained from
the following theorem.

Theorem II1.2: In a K-tier mmWave network with truncated
channel inversion power control where each tier is distinguished
by its density Ay, cutoff threshold p¥, blockage parameter 3y,
antenna parameters, G{;}j‘x, z‘,‘g“, and (,x, LOS pathloss ex-
ponent o and NLOS pathloss exponent o%;, the SINR outage
probability of a typical user in the jth tier is given by

N 2 K
0= (-1 (JD exp <_”Zfﬂg (i v:))

= k=1

> (1 _ e*,@j(q%p) Ny) yph fpk(p)dpdy,

. 1 .
ad kT T PN A
n= NV F, Ay = (2o o g, = (amyebeky o

,a’ and bJ are the antenna

. .ad
F(Noy) =1 = qpe-al = 17
directivity parameters defined in Section IT and fp, (p) is defined
in (1).
Proof: See Appendix B* |
Though this approximates, the SINR outage probability, we
find that the expression compares very well with the sim-
ulation results in Section V-A. Furthermore, the expression
here captures the user maximum power constraint contrary to
the prior result on the uplink of mmWave networks in [24],
which is based on an unbounded power constraint. The max-
imum power constraint is very important in the uplink power
control of mmWave network due to the significant difference
in the LOS and NLOS pathloss exponent. We show the im-
pact of the maximum power constraint later in Section V.
It has been shown in [8] that the LOS probability function
can be approximated by a step function in a dense mmWave

“Note that the SINR outage probability for the single-tier mmWave can
be obtained from Theorem III.2 by setting j = k = K = 1, and using the
distribution of the transmit power of the typical user in a single-tier defined
in Corollary III.1.

network. Hence, in the next section, we propose to simplify
our uplink system model and the subsequent analysis by us-
ing a step function approximation of the LOS probability
function.

IV. ANALYSIS OF THE UPLINK OF DENSE MMWAVE NETWORKS

In this section, we present the analysis for the uplink of a dense
mmWave cellular network. The motivation for the dense network
analysis is based on the fact that mmWave cellular networks
must be dense in order to achieve its forecasted gain [8]. Here,
we approximate the LOS probability P(LOSy) by using a step
function such that the LOS probability P (LOSy) is taken to be
1 when the link is within a circular disc B(0, Rp) centered at the
reference mmWave BS and 0 when outside the disc. Next, we
present uplink signal-to-interference-ratio (SIR) distribution for
the dense multitier mmWave networks, which we later degrade
to the single-tier scenario.

A. Outage Analysis in Dense Multitier mmWave Networks

The dense mmWave network will be interference limited with
mainly LOS interferers limiting its performance. Hence, we
ignore both the noise power and the NLOS interfering users
in the analysis. Furthermore, according to [3], the signal power
from LOS interferers are nearly deterministic, hence, we also
ignore the small-scale fading. Consequently, the SIR at the BS
that the typical user connects to in the jth tier can be expressed
from (9) as

PiG;
e . .
D oke1 2zezpnB(0,Ry) P2 GEL(D:)
As mentioned earlier, for the dense deployment, the LOS inter-

ferers are dominant and the SINR outage probability in the jth
tier can thus be approximated as

K
P (SIR; gej)zp{pﬁ;gj gejzlf} (13)

k=1

SIR; = (12)

where I} = > sezinB(o.ry) P2G=L(D>) is the interference
power received at the reference BS from users connected to
BSs in the kth tier. Note that the average receive signal at the
reference BS normalized by the directivity gain G; is equivalent
to the cutoff threshold p?. The SINR outage probability can be
approximated as

K K k
. a 0 I
P {pigj < ejZIf} Wp {h < i Zijkﬂ L}
k=1 poGj

9 25—1 Illi
(:) 1—e€ L7

L

Lor K

=3 <l><—1)l 1T 2o (1) (14)
k=1

where the dummy variable / in (a) is used to denote normalized

gamma variable with parameter L. Note that the distribution of

the normalized gamma variable converges to an identity when

its parameters tend to infinity, (b) follows from [28] such that
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the probability P(|h|? < =) is tightly upper bounded by [1 —
exp(—yN (N~ %)Y and s = Tzeg] . In the following theorem,
we summarize the main result for the SIR outage distribution in
a multitier network.

Theorem IV.1: The SINR outage probability in the jth tier
of a K-tier mmWave cellular network with truncated channel
inversion power control can be approximated as (17) shown
at the bottom of this page, where A} = A,mR%, T'(a,b) =
J,” t* e 'dt is the upper incomplete gamma function, a and
bJ are the antenna directivity parameters defined in Section II,
n=L(LY) T, L is used in the approximation and fp, (p) is
defined as

2
2521 2Tkl Li x ( )%
as (pk) “L — S| ) L
Ir.(p) = R
IS K e (pew )
1—e ot Aa(m’?) -
15)
Proof: See Appendix C. |

For a single-tier dense mmWave network, the approximation
of SINR outage probability can be obtained from the following
corollary.

Corollary 1V.1: The SINR outage probability in a single-tier
mmWave cellular network with truncated channel inversion
power control can be approximated as (18) shown at the bottom
of this page, where 19 = AmR%, I'(a,b) = [,” t* te~'dt is the
upper incomplete gamma function, a,, and b, are the antenna
directivity parameters defined in Section I, p = L(L)", L is
the number of terms used in the approximation and fp(p) is
defined as

2 1 ,ﬂk(L)%
2TApeL e ro
aLps” <1 — e m(5e)E )

Proof: The proof follows directly from the proof of the
multitier mmWave cellular networks and is omitted here. W

V. NUMERICAL RESULTS

In this section, we present numerical results to illustrate
our analytical findings for both the single-tier and two-tier
mmWave cellular networks. Unless otherwise stated, we set
the BS densities A; = 10 BS/km? and Ao = 21, the maximum
transmit power P, = 1 W, 02 = —110 dBm, the tier blockage
parameters 51 = 0.0071 and B3 = 0.0143 with corresponding
pathlossexponentat = 2, ak, = 4,02 = 2.9,a% = 5,and the
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Fig. 1. Comparison of the analytical results with simulation in single-tier
mmWave networks for 51 = 0.0071, alL = 2, and a]lv =4.

Nakagami fading parameter N = 3. Furthermore, unless other-
wise stated, the antenna parameters of the first and second tier
BSs are equivalent such that G} = G = 7 dB, Gij" =
G = —10 dB, and (51 = (p2 = 30°, while that of the users
are assumed to be characterized with G'® = 7 dB, G" =
—10 dB and ¢,, = 90°. In addition, we have utilized the system
parameters of the first tier for the single-tier network results.
Note that the simulation parameters used throughout this article
are based on [8], [21], and [24].

A. SINR Outage Probability

In Figs. 1 and 2, we verify our derivation by plotting the
analytical and simulation results for the single-tier and two-tier
mmWave cellular networks, respectively. We also show the
simulation results for the case where the NLOS is modeled with
Rayleigh small-scale fading in Fig. 1. The results show that our
derived analytical model accurately captures the SINR outage
probability for both the single-tier and multitier mmWave cellu-
lar networks. Hence, our derived model finds great application in
the mmWave multitier network where each tier can be identified
via its BS density, blockage parameter, and corresponding LOS
and NLOS pathloss exponents, receiver sensitivity, and the BS

Pu 7
[ (3
el 0 Po

2

4 ; . ,
27mh 0ja) \ *1 . = -2 nlb;al —2 nlb;al p*
ﬂ'jk Z (Tl jy%) bipi <F (j, W) -T <j7 W)) fp (p)da (17)
ap =1\ PoYi oy po9iRg" ap  po¥;
L Pu 2
_ L P\ L
O, = Z(—l)l(l) exp (/0 <7r)» (Po) —Xo
1=0
2mTA nl9av>a2L 2 ( (—2 nl@aw) <—2 nl@av))
T wpor (D ==, 22%P ) _p (£ d 18
. v—1< oG p oL poGRY P fp(p)dp (18)
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Fig. 2. Comparison of the analytical results with simulation in a two-tier
mmWave network for 81 = 0.0071, 32 = 0.0143, oz}l =2, oa}\, =4, a% =
2.9, and a%; = 5, and BS densities A; = 10BS/km? and A2 = 211. Red and
blue dashed-lines represent mmWave networks 1 and 2, respectively.
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Fig. 3. Effect of the maximum transmit power in a single-tier mmWave
network for #; = 20 dB, 81 = 0.0071, alL =2, a}v =4, and BS densities
A = 10 BS/km?.

antenna gain. Note that this validation is essential since the
cumulative distribution of the SINR is based on the assumption
that the active user constitute a PPP and that the transmit powers
of the users are independent. Furthermore, independent LOS
probability was assumed. The approach in this article, however,
captures the correlation between the location of the reference
mmWave BS and that of the interfering users. It also captures the
correlation between the typical user’s (served by the reference
mmWave BS) transmit power and the interfering users’ transmit
powers. Furthermore, like [32], the results in Fig. 1 shows that
modeling the NLOS links with Nakagami fading has minor
impact on the SINR outage probability. However, note that all
other simulation results assume Rayleigh small-scale fading for
the NLOS links for completeness.

In Fig. 3, we compare our analysis with the one presented
in [24], which does not incorporate the maximum user power
constraint. Note that the analysis in [24] is for the single-tier,
and hence, the comparison presented in Fig. 3 is also based on a
single tier. As it can be seen, the maximum power constraint

-9 80 -70  -60 50 40 -30 20 -10 0

py (dBm)

Fig. 4. Effect of the BS density on the SINR outage probability for A1 =
10 and 100 BS/km?, 81 = 0.0071, a} = 2, and o, = 4 in a single-tier net-
work.

significantly affects the SINR outage probability. The figure
shows that the SINR outage probability derived in [24] does not
vary with P,, since the maximum power constraint is ignored
in [24].

InFig. 4, we plot the SINR outage probability for the uplink of
asingle-tier mmWave networks with truncated channel inversion
power control for SINR threshold § = 20, 25, and 30 dB, and BS
densities A1 = 10, 100 BS/km?. It can be seen that the SINR
outage probability of the mmWave deviates from that of the
UHF network presented in [16]. More specifically, the following
four sections can be identified from the plot for the BS density
A1 = 10 BS/km?.

1) A decrease in SINR outage probability can be seen for the

cutoff threshold p} ranging from —100 to —50 dBm with
a slow descent region observed for pj ranging from —85
to —75 dBm.

2) A fairly stable outage probability can be observed for p}

ranging from —50 to —31 dBm.

3) An increase in SINR outage probability can be seen for

pL ranging from —31 to —18 dBm.

4) A decrease in SINR outage probability can be seen for p}

ranging from —18 to 0 dBm.

This observation is a result of the large difference in the
pathloss exponent of the LOS and NLOS propagation path,
with each having its dominance region that also depends on
the BS density and blockage parameter. The latter specifies the
LOS range. Furthermore, the receiver sensitivity also specifies
the density of active LOS and NLOS users and consequently,
the interference received at the reference BS. It can also be
observed from Fig. 4 that for the same SINR threshold, in-
creasing the BS density leads to an increase in the SINR outage
probability.

In Fig. 5, we show the effect of blockages on the SINR outage
probability. Based on the LOS probability function e %17, a
lower (31 yields a larger number of LOS interfering user. Hence,
the interference power increases when (31 is lowered leading to
a higher SINR outage probability for a lower (31, as it can be
seen in Fig. 5.

Figs. 6 and 7 shows the numerical results based on the
dense network approximations in Section IV. In particular,
Fig. 6 compares the dense network approximation of the SINR
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outage probability of a single-tier mmWave network given in
Corollary IV.1 with the exact expression in Theorem III.2. For
the dense network approximation, we take the radius of the
LOS disk Rp to be equal to 200 m and a relative BS density
Xo = 100 where Ao = A;mR%. The dense network approxi-
mation becomes more accurate as L increases. Furthermore,
Fig. 7, compares the multitier dense network approximation in
Theorem IV.1 with the exact expression in Theorem II1.2, while
focusing on a two-tier network. The first tier’s BS density is
obtained from Ao = A;7R%, while the second tier’s BS density
Ao = 2A; and L equals 10. It can be seen that similar to the
single-tier network, the dense network approximation of the
SINR outage probability is also fairly accurate for the multitier
network.

B. Truncation Outage Probability

Fig. 8 compares the truncation outage probability for the
uplink of mmWave and UHF cellular networks for BS density
A = 1,10, and 100 BS/km?. The truncation outage probability
of UHF networks has been defined in [16]. It can be seen
that similar to the UHF case, increasing the cutoff threshold
increases the outage probability since more users are unable to
communicate due to insufficient transmit power. These results
are in line with the insights previously in Section III-A. Fur-
thermore, for BS densities A = 1 and 10, the truncation outage
of mmWave networks experience a slow growth region as the
cutoff threshold increases before its saturation contrary to UHF
networks, which does not experience a slow growth region. The
slow growth region is due to the difference in the truncation
outage probability for LOS and NLOS links at a given cutoff
threshold. Meanwhile, for a high BS density of A = 100, the
truncation outage probability of mmWave converges to that of
UHF with o = 2 since more paths becomes LOS as the BS
density increases. As expected, Fig. 8 shows that the truncation
outage of mmWave networks reduces with as the BS density
increases. This observation is due to the shortening of the average
link lengths as the BS density is increased.
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C. Total Outage Probability

In Fig. 9, we show the tradeoff introduced by the cutoff
threshold p! on the total outage probability, which is defined
as Oy = O, + (1 - 0,)0,, for the single-tier mmWave net-
work. It can be observed that p! tunes the tradeoff between
the truncation and SINR outage probabilities and there exists a
cutoff threshold p2* that minimizes the total outage probability
in the single-tier network. Furthermore, the SINR probability
dominates the total outage probability at lower cutoff thresh-
old, while the truncation outage probability dominates the total
outage probability at high values of the cutoff threshold p_.

D. Average User Transmit Power

In Fig. 10, we plot the average transmit power of the users
against the cutoff threshold pj for the single-tier mmWave net-
work. It can be observed that for the case with BS density A = 1,
the average transmit power increases with the cutoff threshold
for p! ranging from —100 to =75 dBm and it then falls for p}
ranging from —75 to —40 dBm. Afterwards, average transmit

power then rises with the cutoff threshold until its saturation.
Note that increasing p., the user need to transmit a higher power
to invert the pathloss and maintain a high threshold at the serving
BS. However, each user is constrained to a maximum power
P,. Hence, a user becomes inactive when its transmit power
requirement exceeds P,. An initial increase in p! increases
the transmit power of all users, and hence, the first increase
in the mean transmit power. A point is reached where the
density of active NLOS users starts to decrease with increasing
cutoff threshold since the maximum power constraint cannot be
satisfied, and hence, the reduction in the mean transmit power.
The large discrepancy between the pathloss exponent of the LOS
and NLOS users also means a large difference in the transmit
power. However, a cutoff threshold is reached where the active
LOS user starts to dominate since most NLOS users are inactive,
thus leading to an increase in the mean transmit power till its
2

. P,.
min(a}, al) + 2
For dense deployment such as A = 100, most of the paths are
LOS and the transmit power is nondecreasing with p, in this
case.

saturation value given by lim E[Py] =
P00

VI. CONCLUSION

In this article, we have presented a stochastic geometry-based
framework to analyze the SINR outage probability in the uplink
of multitier mmWave cellular networks with truncation channel
inversion power control. The framework incorporates the effect
of blockages, the per-user power control as well as the maximum
power limitations of the users. Furthermore, each user controls
its transmit power such that the received signal at its serving BS
is equal to predefined cutoff threshold. Based on the proposed
framework, we derived accurate expressions of the truncation
outage probability and SINR outage probability for the uplink
of the multitier mmWave cellular networks. Numerical results
show that contrary to the conventional UHF networks, there
exists a slow growth region for the truncated outage probability.
Furthermore, increasing the cutoff threshold does not necessar-
ily lead to a reduction in the SINR outage probability of the
mmWave networks.

APPENDIX
A. Proof of Theorem IlI.1

By
@) is used to select

Given that y, = min (||u —my]
mkECDk

the serving BS in the kth tier. Then from [26], f,, (y) =
M (y)e M) where

QA —-1 ok
Me(y) = Wkkyalz e Pt
ary,
27T)»k Iz 1 -8B 0‘1?\,
ke 1— e Py (19)
oy
and
27T)\.k ”Lk Lk -
Ax(y) = 7 1—e Pyt <1+ﬁkyQL> + TARY TN
k
27 o 1
™ L 5
—Tzk L—e P (1+5ky“§> (20)
k
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Noting that the user connects to the BS that provides the max-
imum average received signal. The typical user u connects to
the reference BS from the jth tier, then y; = mkin(yk). The

transmit power of the typical user connected to the reference
user in the jth tier is given by P; = pJ mkin(yk) where P; < P,.
Consequently, the cumulative distribution function (CDF) of the
transmit power can be expressed as

K
=2 h=1 Mk (p%)

IEEE SYSTEMS JOURNAL

and A.(.) is given in (20).

The PDF of P; has been normalized as a result of the truncated
channel inversion power control. Furthermore, the nth moment
of P; is thus given by [, OP“' p" fp, (p) and the theorem is obtained.

B. Proof of Theorem II1.2

Noting that the average interference received from any inter-
fering user from the kth tier is less than p*. The sum interference
received at the reference BS in the jth tier from LOS users in
the kth can be expressed as

= 3 1 (Pallual ™ < o) PaGlge e
u Pk \{o}

(24)
where ®% is a PPP of LOS interfering users from the kth tier.
The indicator function is used to capture the correlation among
the location of the interfering users and the location of the
reference BS. Hence, the Laplace transform of the aggregate
interference from LOS users in the kth tier received by the
reference mmWave BS in the jth tier £ 7k can be computed as
(25) shown at the bottom of this page, where (b1) follows from
the independence of ®%, g., GJ, and P, (b2) follows from
the probability generation functional (PGFL) of the PPP [9] and
the independence of the interference link directivity gain GJ
with probability distribution a? with probability b7, (b3) follows
from computing the moment generating function of a gamma

1—e
Fr;(p) = Q1)
()
1—e P
and the PDF of the transmit power is given as
dFp, (p)
ij p) = —
( dr
Kox SYE A (2
_ Zk:l)\k(p) e =1 b<pJ> 22)
_T K Py
1—e Za:lAa(ﬂi)
where
- 27\, -1 75k(%)@
k(p) - B j2/a’z L e Po
a'f po
2 21 B 2 ok
o YN 1—e k(ﬁé) (23)
K j2/o%
'y Po
. —sn X;E
Ly =Eqy ] =Eqy e =00

e | I

uzeqﬂZ\{o}

4
—27hk Y b)) foc
v=1

2) ok

4. )
—2ma, 3 bY [ e NN
= (E) e enadr
(b3) Po N

—2magbd [

7 iN"Y
P, ey J T
k snaj Ppr L
4 : L 14 509k
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1

v

= (smatof)

(b4) 1T el Pu
-
= Hexp =27l g L/ ,j/o 1_<7
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random variable g, (b4) is obtained by changing the variables
1
y= r/(sna{;Pk)“JL , while fp, is given in (1). Furthermore,
q) = snal.
Similarly, the Laplace transform of the aggregate interference

from NLOS users in the kth tier received by the reference BS in
the jth tier £ 1« can be expressed as

4
Lp, =Egr [e’snllﬂ = H exp
v=1

2

N Pu 1
X —QWXkb%q%QN/ ; kiﬁ/o 1—ﬁ
ot =
e —~
xyP N (1= e (@P) ™y ) £ qpdy | = e V. (26)

C. Proof of Theorem IV.1

The proofis based on the key assumptions in Appendix B such
that, where (el) follows from computing the PGFL of the PPP

@k | (e2) follow from a change of variable w = slaJ Ppr— %,
and (e3) follows from the simplified PDF of the transmit power
over the LOS region. The PDF of the uplink transmit power
in the kth tier of dense mmWave networks can be obtained
by noting that P = p’gr,?L, where 7 is the kth tier uplink
distance in the dense deployment, which follows a Rayleigh
distribution f,, (r) = 277)»7“6’””2, 0 < r < oco. Consequently,
following the same approach in Appendix A, we obtain the PDF
of the kth tier transmit power as

(28)

Finally, the approximation of the SINR outage probability in
the uplink of a multitier mmWave network given in (17) can be
obtained by substituting (27) shown at the top of this page, for
(14) and with Ay = )\,’R’RQB.
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