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ABSTRACT Diminishing viability of manual fault diagnosis in the increasingly complex emerging
cellular network has motivated research towards artificial intelligence (Al)-based fault diagnosis using the
minimization of drive test (MDT) reports. However, existing Al solutions in the literature remain limited
to either diagnosis of faults in a single base station only or the diagnosis of a single fault in a multiple BS
scenario. Moreover, lack of robustness to MDT reports spatial sparsity renders these solutions unsuitable for
practical deployment. To address this problem, in this paper we present a novel framework named Hybrid
Deep Learning-based Root Cause Analysis (HYDRA) that uses a hybrid of convolutional neural networks,
extreme gradient boosting, and the MDT data enrichment techniques to diagnose multiple faults in a multiple
base station network. Performance evaluation under realistic and extreme settings shows that HYDRA yields
an accuracy of 93% and compared to the state-of-the-art fault diagnosis solutions, HYDRA is far more robust
to MDT report sparsity.

INDEX TERMS Root cause analysis, cellular data sparsity, data enrichment, multi-fault diagnosis,
minimization of drive tests, hybrid deep learning, radio environment maps, image inpainting, self healing,

network automation.

I. INTRODUCTION

Management tasks in emerging cellular networks are becom-
ing more complex due to evolving network architecture,
rapidly increasing and diversifying network traffic, and the
growing number of network parameters [1], [2]. Among sev-
eral management challenges in emerging cellular networks,
one major challenge is the timely detection and diagnosis
of faults. The increasing complexity of emerging cellular
networks and the ultra-reliability requirements of numerous
emerging applications are intensifying the challenges of the
detection and diagnosis of faults.
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Faults, that can lead to hard outages (complete coverage
degradation) or soft outages (partial service degradation)
in cellular networks can occur due to several reasons.
These include poor network design, including improperly
configured parameters such as the number, types, and
locations of the base stations (BS), antenna heights, sector
orientation, tilt, power, frequency reuse patterns, or the
number of carriers, among others. Other types of faults can
occur due to hardware, software, or functionality failures
(e.g., power supply or radio board and network connectivity
failures) [3].

Traditionally, outages resulting from faults are detected
by human-based monitoring of either alarms, performance
counters, or complaints filed by network subscribers [3], [4].
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This can take hours and at times days to resolve outage
issues. Therefore, for better Quality of Experience (QoE)
and Quality of Service (QoS), network providers spend a
lot of money, time, and resources to do coverage testing
via drive tests. This helps them resolve problems caused
by poor parameter configuration and environment change
at the cost of heavy capital and operational expenditures.
Outages caused by parameter misconfiguration or hardware
or software failure that did not raise an alarm are even
more challenging to detect and diagnose. These require
network experts to manually analyze network logs which can,
in turn, further slowdown the outage compensation process.
Moreover, this challenge of fault detection and root cause
analysis is especially aggravated in emerging ultra-dense
networks, where the same advances in network design that
bring advantages such as higher data rates and capacity as
compared to legacy networks, e.g., densification, also lead to
the growing complexity of the network, making it difficult to
manually detect and diagnose faults. The additional burden
of growing operational and capital expenditures is making
matters worse.

Therefore, outage detection and fault diagnosis through
the conventional human monitoring of logs and counters or
manual collection of data through the drive-test is neither a
practical nor viable option particularly in emerging complex
and dynamic network environments [5], [6].

Network automation solutions, i.e., self-healing solutions
are needed to automate the process of fault detection and diag-
nosis. Only when the outages and their root cause are detected
promptly without drive tests and humans in the loop, will the
network be able to take actions to compensate for these out-
ages autonomously. The automatic root cause analysis of out-
age problems can save billions of dollars to network providers
annually, by replacing manual resolution of coverage-related
anomalies [4]. To wake of this need, the 3GPP has introduced
minimization of drive test (MDT) reports feature [7], where
the user equipment (UE) periodically sends network coverage
related key performance indicators (such as Reference
Signal Received Power and Quality, RSRP, and RSRQ
respectively) along with their geographical location to their
serving base stations, thus eliminating the need for drive
tests. Following the standardization of MDT reports, the
problem of outage detection and automated fault diagnosis
using MDT reports has gained significant attention in the
literature.

The rest of the paper is organized as follows: The related
work is presented in Section II. The considered network
topology and data acquisition method are presented in
Section III. The proposed HYDRA framework is described
in section IV, details of proposed MDT data enrichment
methods are presented in section IV-A, while a detailed
implementation and intuition behind using a hybrid model
for root cause analysis are explained in Section IV-B.
Results and insights from the performance analysis are
provided in section V and Section VI concludes this
study.
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Il. RELATED WORK

Although outage detection has been studied extensively in the
literature [8]—[14], relatively a small number of studies have
focused on outage diagnosis [15]-[17].

Among the several studies that focus on outage detection,
are works that use convolutional neural networks (CNN) [8],
deep neural networks (DNN) [10], support vector machine
(SVM) [12], and several other machine learning (ML)-based
methods [10], [12], [18]-[21]. For a thorough review of
outage detection, the reader is referred to a recent survey
presented in [2]. A key insight from the extensive review
presented in [2] is that almost all existing studies on outage
detection and diagnosis overlook a major practical challenge
while using MDT reports i.e., the spatial sparsity of MDT
reports in the real network. That is most studies assume
that MDT reports are available from each point in the area
under concern, an assumption that does not hold in a real
deployment. This is because MDT reports can be received
only from bins where users are present. This usually is a small
fraction of the area of interest. In ultra-dense deployments,
small cells contain even fewer users compared to macro
cells. This makes the number of MDT reports per cell even
smaller. This poses a major practical problem for automation
solutions that leverage MDT data. However, this problem is
often overlooked in the literature by assuming that ample
MDT reports are available to represent network KPIs in the
whole coverage area.

In comparison to outage detection, outage diagnosis that is
the focus of this paper, remains relatively under investigated
in the literature. The study in [15] is among those few works
that focus on outage diagnosis using self-organizing maps
(SOM). Another such study in [22] also present a fault
diagnosis framework using SOM. However, the solutions
presented in both [15] and [22] are semi-supervised and
require input from experts for accurate labeling of the
clusters (formed based on different fault classes). Apart from
that the SOMs are not robust to varying distributions of
data, which makes them nongeneralizable to use with real
network MDT reports, due to the sparse nature of MDT
data.

In [23] researchers propose an ensemble model (combining
two or more classification techniques) for fault diagnosis,
which use multiple classifiers that diagnose the current state
of the network (normal or anomalous ) based on a majority
vote, from given network key performance indicators (KPIs)
e.g., signal-to-interference-plus-noise ratio (SINR), received
signal received power (RSRP), etc. This solution adds cost
sensitivity based on misclassification of faults. The cost
function assigns different costs for different faults depending
upon the severity of the fault. However, the MDT training data
sparsity and multi-fault in multiple BSs are not addressed in
this work either.

The most relevant to this work are the studies presented
in [24]-[26]. The researchers in [24] and [25] present a fault
diagnosis solution using neuromorphic Al and classical ML
methods, respectively. They use MDT reports to generate
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FIGURE 1. Proposed HYDRA framework for root-cause analysis of multi-fault in multiple BSs, based on image enrichment and hybrid deep learning.

radio environment maps (REMs). Their analysis shows
that random forest (RF) outperforms CNN when MDT
data is available from the entire coverage area. However,
as explained earlier real network MDT data is expected to
be both sparse and noisy. Also, both these studies consider
faults in a single BS, i.e., they assume a single fault at
a time. Hence, while offering a promising first set of
results on fault diagnosis using only MDT data in a multi-
BS network, the aforementioned assumptions in [24], [25]
render these solutions unsuitable for real deployment. In [26]
authors present a deep learning (DL)-based solution for the
multi-fault diagnosis in one BS. But the proposed solution
requires the drive-test to get the data of a key feature used in
the model (throughput). The time and cost for the drive-tests
makes this solution less scalable for practical deployment.

Based on the literature review summarized above there
does not exist a practical fault diagnosis solution in the
literature that has the following features.

1) Capability to diagnose multiple faults in multi-base
station deployment scenario.
Capability to operate with sparse/incomplete MDT
reports.

2)

In order to address the above mentioned gaps in lit-
erature, we propose Hybrid Deep Learning-based Root
Cause Analysis (HYDRA), which is the first solution that
includes the capabilities identified above. HYDRA can
detect multiple faults in multi-BS deployment scenarios
with realistic sparse MDT data in fully automated fashion.
To achieve these capabilities HYDRA has two key innovative
components as illustrated in Fig. 1. The first component
solves the MDT report sparsity problem by leveraging data
enrichment techniques (explained in section IV-A). The
second component consists of a novel hybrid of CNN and
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XGBoost based model to achieve reliable diagnosis despite
noise and sparsity in the enriched or raw REMs.

A. CONTRIBUTIONS
The contributions of this paper can be summarized as follows
1) This paper presents first of its kind fault diagnosis
solution that can reliably diagnose multiple faults in
multiple BSs in the network, caused by both hard
outages(network failures leading to no coverage) or soft
outages (occurring due to inefficient configuration of
network parameters) while using sparse MDT reports.
In a real network, faults can occur in different BSs,
and they can be of different types. HYDRA is robust
to not only different kinds of faults and BS locations
but also to variable user densities in the network. This
makes HYDRA more feasible to implement in a real
cellular network where user density and distribution,
never remain static.
HYDRA is designed to work with realistic raw sparse
MDT reports from the network. These reports are
converted into REMs. The REMs are incomplete due
to spatial sparsity of MDT reports resulting from
varying user density. We present a practical solution
to complete REMs. This is done by investigating and
comparing state-of-the-art data enrichment techniques
suitable for the problem. We perform multi-KPI com-
parative analysis of frequency selective reconstruction
(FSR), Biharmonic Equations, and TELEA. Results
show that FSR outperforms others and therefore is best
suited for REM completion task in HYDRA.
The inherent noise in the REMs from sparsity of
MDT reports and/or reconstruction makes task of
fault diagnosis using REMs even more challenging.

2)

3)

VOLUME 10, 2022
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FIGURE 2. Network topology and geographical clutter information used
in simulator for generation of synthetic MDT data.

This challenge is by passed in the literature by
often assuming availability of complete and noise
free REMs. Therefore, classic models such as SVM
[12], RF [24], [25] and CNN [8] are often used
and observed to yield adequate performance in the
literature. Our analysis shows that these classic models
do not attain adequate performance when realistically
sparse MDT data is used to generate REMs. We also
address this issue of data sparsity/scarcity by proposing
and evaluating a hybrid deep learning model where
a CNN is first used to extract the features and the
features are then fed into an XGboost model to
diagnose network coverage anomalies using raw MDT
reports. It is observed that the extensive performance
evaluation (using several suitable performance metrics)
with varying degree of MDT data sparsity shows that
proposed hybrid model performs better than both the
models when used standalone in terms of robustness to
noise and variable UE density.

Ill. NETWORK TOPOLOGY AND DATA ACQUISITION
Figure 1 provides a holistic view of the HYDRA framework.
The framework has three major blocks: The first block is
acquisition of MDT reports from the network explained
in this section. The second block is conversion of raw
MDT reports into REMs and data enrichment using image
inpainting, thoroughly explained in Section IV-A. The third
block is hybrid deep learning based root cause analysis using
sparse REMs data, rigorously described with rationale and
implementation details in Section IV-B.

A. NETWORK TOPOLOGY

The root-cause analysis framework we consider is designed
for a real network but due to the unavailability of real data,
a realistic commercial RF planning and optimization tool,
Forsk Atoll [27] is used to generate and collect MDT reports.
The simulated network topology considers an area from
Brussels City, Belgium as shown in Fig. 2. We consider
15 different clutter types based on environmental conditions
and terrain profiles. Aster propagation (advanced ray-tracing)
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TABLE 1. Network scenario settings.

Values
24 macro BSs (eNodeBs)

Network parameters

Network layout

Sectors per BS 3 sectors/cells per BS

Carrier frequency 2100 MHz
Simulation area 13.292 km?
Bin size 30m x 30m

Antenna height Actual site heights

Propagation model Aster propagation model (ray-tracing)

Clutter types 15 classes
Maximum transmission power | 43 dBm
Cell individual offset (CIO) 0dB
Antenna tilt 0°
Antenna gain 18.3 dBi

Lo . Digital Terrain Model (ground heights) +
Geographical information

Digital Land Use Map (clutter classes)

is used as a propagation model because of its ability to better
capture the idiosyncrasies in the environment as compared
to empirical propagation models. We use the same locations
and configuration parameters of BS used by a real network
provider for its deployment in Belgium. Table 1 reports
these settings. Therefore, the obtained coverage data can be
assumed to be a very close representation of the ground truth
of the MDT reports in area used in the simulation. The area
of simulation is 13.292 km? with 24 macrocell BSs (72 cells)
to generate data with multiple fault classes in multiple BSs
simultaneously.

B. DATA ACQUISITION

We acquire MDT reports with 4 highly used fault classes
in the literature for root cause analysis and self-healing
frameworks: cell outage, low transmission power, excessive
antenna uptilt, and excessive antenna downtilt [15], [28].
Figure 3 presents a visualization using SINR maps of
different fault classes when induced on a selected cell in
the designed network in the simulator. Fig. 3(a) represents a
normal coverage scenario and the impact of other fault classes
on cell coverage is illustrated in Fig. 3(b-e). The parameter
configuration of the 4 fault classes is described as follows:

1) Cell Outage (CO): To simulate cell outage, we deacti-
vate the transmitter on a selected site in the simulator.
This simulates a no-coverage fault scenario around that
cell. Figure 3(b) is presenting the CO scenario for
highlighted cell.

2) Low Transmission Power (LTP): The maximum
transmission power is 43 dBm for a normal BS in our
designed network based on recommended value by [7].
We simulate the LTP fault scenario by reducing the
maximum transmit power of a cell to 25 dBm (we
select this value based on the industry experience of
co-authors ). Figure 3(c) shows an LTP scenario.
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(a) Normal Coverage Map (b) Cell Outage

(¢) Low Transmit Power

(d) Excessive UpTilt

(e) Excessive DownTilt

-10

—20

FIGURE 3. REMs presenting different network conditions. (a) Normal, (b) cell outage, (c) low transmission power, this image is showing when
transmission power drops to 25dBm, (d) excessive antenna uptilt, this is +20° tilt, and (e) excessive antenna downtilt, —20° tilt.

3) Excessive Antenna Downtilt (EAD): To induce exces-
sive antenna downtilt we change the tilt value from 0°
to 20°. Figure 3(d) present an EAD scenario.
Excessive Antenna Uptilt (EAU): Normal antenna tilt
is 0°. We change the tilt value from 0° to —20°. Both
antenna uptilt and downtilt values are selected based
on co-authors’ industry experience. The impact of EAU
can be seen in 3(e) for a selected cell.

4)

To ensure the practicality of the HYDRA, while generating
simulated MDT reports, we randomly select four cells out of
72 cells in total and induce a random fault in them through
a different independent random process. In this way, not
only we can have different cells (based on location in the
network) in each MDT report but also different types of
fault (CO, LTP, EAD, or EAU). We have 19933 different
MDT reports of the network, each having 4 anomalous and
68 normal cells and each anomalous cell with a different
fault.

We then convert raw MDT reports into SINR REMs. The
REMs built from MDT reports are expected to be sparse by
varying degree depending on the user density, time interval
used to aggregate MDT reports in a bin, and size of the
bin [29]. We model this practical constraint by creating
REMs with varying degree of sparsity as shown in Fig. 4.
To overcome the errors in fault detection and diagnosis caused
by the sparsity in REMs in this paper we leverage image
inpainting to enrich the sparse REMs. To the best of our
knowledge image inpainting is not used in cellular domain
because there are just few published works, where MDT
reports are used in the form of REMs. The available literature
which considers REM-based outage diagnosis [24], [25],
does not consider sparsity. This study is the first to investigate
impact of data sparsity and provide a detailed performance
comparison of state-of-the-art-image inpainting techniques to
address the practical problem of sparsity in MDT data and
REMs in Section IV-A.

IV. THE HYDRA FRAMEWORK FOR FAULT DIAGNOSIS
USING SPARSE MDT DATA

In this section we present intuition and implementation
details of block II (data enrichment) and block III (root cause
analysis) of HYDRA framework explained in Figure 1.
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A. DATA ENRICHMENT USING IMAGE INPAINTING
MDT reports in a real networks are expected to be sparse
due to reasons such as low UE density [29]. There are
various methods available to enrich sparse MDT data such
as interpolation [30], regression clustering [31], and krig-
ing [32]. While these methods work well for the enrichment
of numerical data, our goal is to ultimately build REMs
i.e., images. Therefore, instead of classical interpolation
techniques image inpainting methods are more suited to
our purpose here. Image inpainting methods based on fast
marching methods [33], frequency selective reconstruction
(FSR) [34], and Biharmonic equation provide a good balance
between accuracy and time required to reconstruct a complete
REM from a given sparse REM. Building on insights
from these works, to address REM sparsity, we use image
inpainting methods to enrich data before passing it on to
root cause analysis block of Fig. 5. Through extensive survey
of the state-of-the-art image inpainting techniques we select
(based on accuracy and efficiency) following methods to
recover missing SINR values in the REMs. A comparative
analysis of these methods on a sparse dataset (100 MDT
reports/call) in the cellular networks domain is given in
Table 2.
1) Frequency Selective Reconstruction (FSR): FSR
reconstructs missing SINR values using Fourier basis
functions from available neighboring SINR values

VOLUME 10, 2022
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TABLE 2. Performance evaluation of data enrichment methods.

Method RMSE (dB) | SSIM (%) | PSNR (dB)
FSR 8.6 90 22.81
Biharmonic Equation | 9.3 87 21.23
Navier-Stokes (NS) 9.45 86 20.8
TELEA 9.7 85 20.84

in the REM. This is a computationally expensive
method but is highly parallelizable and with the use
of GPUs can achieve significantly accurate results in
considerably less time [34].

2) Biharmonic Equations: This method estimates the
missing pixels using fourth-order partial differential
equations. This is a computationally very expensive
process due to the computation of multiple derivatives
to estimate missing SINR values. It is quite accurate on
small datasets but requires a lot of time to reconstruct
bigger datasets.

3) TELEA: TELEA uses the principles of the fast
marching method [33] to reconstruct missing SINR
values in the REM using normalized weighted sum
computed from known neighborhood SINR values.

4) Navier-Stokes: This method reconstructs the missing
SINR values in the REM using the principle of heuristic
based on fluid dynamic equation (Navier-Stokes) [35].
The reconstruction process starts on the edges and
keeps on filling the missing SINR data towards the
center of the REM.

To evaluate the performance of data enrichment methods
we use root mean square error (RMSE), structural similarity
index measure (SSIM), and peak signal to noise ratio (PSNR)
as performance metrics. It is evident from Table 2 that FSR
outperforms the rest of the inpainting methods. In this work
RMSE is the most important metric because that represents
the difference between estimated (inpainted) value of SINR
against the ground truth.

B. ROOT CAUSE ANALYSIS BASED ON HYBRID DEEP
LEARNING

In this section we elaborate the root cause analysis block in
the HYDRA framework (right most block in Fig. 1). We also
explain the intuition behind using a hybrid deep learning
model, implementation, and performance metrics to compare
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the proposed model against the widely used techniques for
root cause analysis.

o« Why a hybrid deep learning model? The rationale
behind using a hybrid model stems mainly from the
fact that in the cellular networks, the availability of
training data is still a challenge even in the age of big
data [29]. For this reason, we cannot use CNN alone
as it requires large training data and is computationally
more expensive as compared to classical ML models.
On the other hand, classical ML methods when used
alone are less robust to noisy data (noise is induced due
to the application of image inpainting to enrich sparse
MDT data) as compared to CNN. To overcome this
challenge, we use a hybrid approach where we use CNN
for hidden feature extraction from REMs to take advan-
tage of the robustness it offers towards noisy images
[36], [37]. Then we pass the extracted features to
XGBoost which is computationally efficient as com-
pared to the classification layer of CNN [38] and
provides better accuracy when used as a hybrid
[39], [40]. XGBoost takes the extracted features and
performs fault diagnosis. Figure 5 provides a detailed
elaboration of the proposed hybrid model.

« Minimization of drive test reports: MDT reports are
introduced by 3GPP in release 10, these reports have
several features e.g. user location and network quality
of service based on certain KPIs like RSRP, RSRQ,
and SINR to name a few [7]. In this research we use
SINR one of the available KPIs in MDT reports. The
major advantages that MDT reports offer are reduc-
tion of human intervention, reduction in operational
expenditure as well as reduction in time-inefficiency
arising from offline configurations required for coverage
related faults detection and diagnosis. These features
make MDT reports a key enabler for ML-based self-
organization envisioned for emerging cellular networks.

« Convolutional neural network: A CNN is a class of
neural networks that specializes in processing data that
has a grid-like topology, such as an image. CNN uses a
dynamic kernel, and convolutional layers instead of fully
connected layers, which reduces the number of weights
in each layer and hence requires less computation
time, that makes CNN computationally more efficient.
We used CNN for feature extraction from REMs that
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FIGURE 6. Mean model loss for 5-fold cross validated HYDRA.

are image representation of network coverage maps.
The CNN architecture in Figure 5 is our top-performing
model. The loss vs. epoch graph of this model is present
in Figure 6, this graph is based on mean loss values
of 5-fold cross validation for 50 epochs. This graph
shows the lack of overfitting as well as underfitting in
the model training process as the gap between training
and validation loss converges after 50 epochs. A detailed
explanation of each feature extraction function is given
as follows:

1) Convolution: convolution extracts important hid-
den features e.g. boundary edges from the input
coverage map. In this study boundaries are very
important to distinguish between coverage regions
of different sites. The dimensions of output
matrix of convolution operation are defined as
Equation 1 and 2.

I,—F +2P
zw_kl

O, 3 (H
0, = (IC_FS—+2P) +1 )

where O,, O, I, and I, represents the number of
rows and columns of the output and input matrix
respectively, while F, P and S represents the size
of kernel, padding and length of the stride.

2) Batch Normalization: To accelerate the learning of
CNN and to address internal covariate shift, batch
normalization is used [41]. This transformation
normalizes the input to a layer by maintaining
the mean and standard deviation close to 1 and
0 respectively.

3) Pooling: Pooling is used for down-sampling of
feature matrix which reduces its sensitivity and
makes the feature extraction process robust to
changes. We use max pooling to ensure the
presence of the most activated features.

« Extreme gradient boosting: XGBoost is a decision-
tree-based ensemble ML algorithm that uses a gradient
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boosting framework [42]. The tree-based nature and
gradient boosting makes XGBoost yield superior results
using fewer computing resources in the shortest amount
of time. Time and computation efficiency is the reason
we use XGBoost as a classification model of HYDRA
instead of other ML models like artificial neural
networks (ANN) [38], RNN, MLP, or extreme learning
machines (ELM) [39], [40]. Furthermore, it gives more
accurate results as compared to SVM and random forest.
A detailed performance analysis of XGBoost against
SVM and random forest is present in Section V.
Performance metrics: As we propose a solution for
a multi-label multi-class problem, unlike a simple
classification problem, it requires special performance
measuring metrics [43], [44], due to the biased nature of
data towards normal class. Hence, we choose following
performance metrics to evaluate the HYDRA.

1) F1-Score (F1): Fl-score combines both precision
and recall in one metric by taking their harmonic
mean. This provides a more realistic performance
analysis because it minimizes the chance of bias
towards the majority class in the data. F1-score of
a class is defined by 3

Tp

Fr=_——F"—"
Tp+ 5(Fp+ Fn)

3)
where Tp is true positive (%), Fp is false positive
(%), and Fn is false negative (%) of the respective
class.

2) Exact Match Ratio/Subset Accuracy (EMR):
According to EMR, a diagnosis made by the
model will be correct only if the network condition
of all the cells in the network are diagnosed
correctly. In this study we have a network designed
with 72 cells, even if the network condition of
1 out of 72 cells for a given REM is predicted
incorrectly, that REM will be considered as an
incorrect prediction. This is considered a very
strict performance metric, but to present a critical
performance analysis we include it in our results.
EMR is defined by Equation 4.

1 N
EMR = + gl(P,- =T) “)

where I is a proposition function which returns 1 if
all 72 cells are correctly diagnosed else returns 0.

3) Proportionally Correct Diagnosis (PCD): We
present a worst-case performance analysis of
HYDRA using PCD, because even if it diagnose
2 out of 4 faults correctly that can help compensate
half of the anomalous cells in the network. So,
besides EMR we present proportionally correct
results. PCD presents percentage of cases when 4,
3,2 or 1 faults (out of 4) are correctly diagnosed
from a given REM.
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TABLE 3. F-score comparison of ML algorithms for different network conditions on sparse training and testing data (100 MDT reports/cell).

Machine Learning Algorithm
Network Condition Support Vector Machine | Random Forest XGBoost CNN HYDRA
Train Test Train Test Train Test Train Test Train Test
Cell Outage 0.852 0.841 0.851 0.84 0.856 | 0.847 | 0.86 | 0.846 | 091 0.905
Low Transmit Power 0.85 0.841 0.856 0.85 0.84 | 0.863 | 0.867 | 0.865 | 0915 | 0.902
Excessive Antenna Downtilt | 0.885 0.871 0.854 | 0.869 | 0.875 | 0.872 | 0.88 | 0.874 | 0.94 | 0.939
Excessive Antenna Uptilt 0.881 0.873 0.868 | 0.864 | 0.877 | 0.867 | 0.874 | 0.866 | 0.924 | 0.921

TABLE 4. F-score comparison of ML algorithms for different network conditions on enriched (using FSR image inpainting) training and testing data.

True Network Condition

Low Transmit Power Excessive Uptilt

Machine Learning Algorithm

Network Condition Support Vector Machine | Random Forest XGBoost CNN HYDRA
Train Test Train Test Train Test Train Test Train Test
Cell Outage 0.847 0.843 0.852 | 0.842 | 0.858 | 0.852 | 0.863 | 0.850 | 0.91 0.920
Low Transmit Power 0.859 0.862 0.866 | 0.860 091 | 0905 | 0917 | 0907 | 0915 | 0.914
Excessive Antenna Downtilt | 0.895 0.893 0904 | 0.896 | 0915 | 0910 | 0923 | 0911 | 0.99 | 0.989
Excessive Antenna Uptilt 0.871 0.897 0918 | 0.904 | 0917 | 0920 | 0927 | 0.922 | 0.989 | 0.981

1800

1500

1200

-900

-600

-300

Excessive Downtilt

Cell Outage

Predicted Network Condition

FIGURE 7. Mean confusion matrix for multi-fault diagnosis for HYDRA using 5-fold cross validation.

V. RESULTS AND COMPARATIVE ANALYSIS

We used 5-fold cross validation method [45] for the
performance analysis presented in this section. Because
cross validation ensures that each sample from the original
dataset has an equal chance of appearing in training and
validation set. Which is well suited approach when we have
limited input data. We compare the performance of HYDRA
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against the state-of-the-art ML methods used for detection
and diagnosis of outages in the literature. These include
SVM [12], [46], [47], RF [24], [25], standalone XGBoost and
standalone CNN [24]. We evaluate HYDRA with different
UE densities to analyze its efficacy in realistic settings (i.e.,
robustness to sparsity of MDT reports in a cell/area). Figure 8
presents performance evaluation of state-of-the-art ML/DL
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FIGURE 8. EMR based performance analysis on sparse and respective enriched REMs. Note: (REMs with 203 MDT reports per cell are full

coverage maps, so do not require enrichment).

models for sparse data (considering various UE densities)
and enriched data (enhanced using FSR image inpainting
as explained in Section IV-A). Figures 8(b) - 8(f) provide
a comparative analysis of sparse and enriched data using
EMR as metric. The insights coming from performance
analysis of selected models on sparse and enriched data can
be summarized as follows:

1) Performance for each fault class based on F-1 score:
Table 3 presents a comparison of HYDRA based on F-1
score for each fault class against SVM, random forest,
XGBoost, and standalone CNN on sparse data. This
can be seen that HYDRA outperforms other methods
based on F-1 score with a consistent F-1 score of
above 0.90 for each network fault. Table 4 provides
fault diagnosis results on enriched data. A significant
improvement in F-1 score can be seen for both antenna
uptilt and antenna downtilt but there is relatively less
improvement for cell outage and low transmit power,
on enriched data. The reason for no improvement in
cell outage and low transmit power is because cell
going through complete or partial outage will not
have much coverage even after the data enrichment
process, so the diagnosis accuracy remains almost the
same.

2) Performance analysis based on confusion matrix:
Figure 7 present thorough insights about performance
of HYDRA for each network fault. Two network
conditions that are not well distinguished are lower
transmit power and cell outage, both the faults are
confused by HYDRA as one another. That makes sense
if we look at Fig. 3(b) and Fig. 3(c) cell outage and low
transmit power affect the coverage of a cell in a similar
fashion. Therefore, it is relatively more challenging to
distinguish between cell outage and low transmit power
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3)

4)

as compared to excessive antenna uptilt and downtilt.
Resolving the high-rate of confusion between these
two specific faults i.e. low transmission power and cell
outage for other reasons, can be an interesting topic
for a dedicated future study as it may have to leverage
Bayesian analysis and historical fault logs to establish
priors

Performance on sparse REMs: From Fig. 8(a),
we can observe that SVM and RF perform slightly
better than CNN and XGBoost on complete REMs
(i.e., when the number of users is large enough to
send MDT report from each bin of the area under
consideration). This justifies the popularity of SVM for
self-healing in the literature [12]. But a drastic drop in
diagnosis performance can be seen for SVM and RF
on sparse data. i.e., EMR drops from 90.2% to 69%
and from 92% to 71.3% respectively, as the density of
MDT reports drop from 203 in Fig. 8(a) to 100 per
cell in Fig. 8(b). The downward trend in performance
continues as the number of reports decreases per cell.
EMR of SVM drops to 13.5% when MDT reports
per cell decrease to 20 in Fig. 8(f). In contrast, the
results show that HYDRA is relatively robust to the
REMs sparsity and can diagnose faults with an EMR
of 45%, even when REMs are extremely sparse with
just 20 MDT reports/cell.

Performance on enriched REMs: From Fig. 8(f)
HYDRA shows a promising improvement on enriched
data as compared to sparse data. Figure 8(f), shows that
HYDRA can diagnose faults with an EMR of 67% on
data enriched from highly sparse (20 MDT reports/cell)
REMs. This is a 22% improvement in EMR achieved
using data enrichment and hybrid deep learning based
diagnosis proposed in HYDRA.
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TABLE 5. Performance analysis showing performance of ML algorithms for correctly diagnosing a proportion of faults.

Machine Learning Algorithm
Support Vector Machine | Random Forest | XGBoost CNN | HYDRA
203 100 100 100 100 100
100 99 99.6 99.9 99.9 100
. 80 94.5 97.9 99.7 99.8 100
1 out of 4 faults correctly diagnosed
60 91.5 95.3 99.4 99.5 99.9
" 40 86 94.9 98.2 98.5 99.8
3 20 74 80 88 903 | 992
; 203 99.5 99.9 99.9 99.9 100
§ 100 98.2 99 99.4 99.6 99.8
0
3 . . 80 91 97 97.2 98.2 929
=} 2 out of 4 faults correctly diagnosed | _
= 3 60 86 89.2 94.2 95 97
151
£ g 40 77 79 89 91 93
)
2 £ 20 68 71 82 84 89
'E qg; 203 97.5 97.9 98 98.5 99.8
i
g = [ 100 82 88.5 92 93 96
-]
g _ = | s0 75 85 87.2 88 92
£ | 3 out of 4 faults correctly diagnosed
% 60 62 71 82 83 87
§° 40 48 64 76.9 78 81
E 20 37 49 7 72 76
~
E 203 90.6 93 93 93.5 95
100 72 77 84 84.5 86
. 80 68 69 74.7 77 79
4 out of 4 faults correctly diagnosed
60 56 62 69 72 75
40 44 56 65 66 71.8
20 25 43 62 63 68

5) Proportionally correct diagnosed faults on enriched
data: Furthermore, a worst-case performance analysis
is presented in Table 5, showing the proportion of
correctly diagnosed faults using different MDT report
densities. It can be seen from Table 5 that HYDRA
can correctly diagnose at least 2 faults in the network
with 100% accuracy for complete REMs and with 89%
accuracy from highly sparse (20 MDT reports/cell)
MDT data. Furthermore, the proposed model can
reliably diagnose 3 of the 4 faults 76% of the time from
highly sparse MDT data. And it can identify at least
one fault in around 99% of the maps enriched from
just 20 MDT reports/cell sparse data.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel and practically usable framework
for root cause analysis of coverage-related anomalies in
emerging cellular networks, named HYDRA. The practicality
of HYDRA stems from its ability to diagnose faults even
from very sparse minimization of drive tests (MDT) data,
a capability that no state-of-the-art outage detection or
fault diagnosis solutions offer. The MDT data sparsity
issue is addressed in HYDRA through data enrichment
via image inpainting methods. The sparsity itself and then
the inpainting methods add noise to the resultant REM,
which makes diagnosis harder. To overcome this problem,

VOLUME 10, 2022

HYDRA leverages a hybrid model that combines CNN
and XGBoost, where former performs feature extraction for
MDT-based REMs and later uses the extracted features to
perform fault diagnosis. This hybrid model give HYDRA
the robustness against the noise. We evaluate HYDRA in
realistic deployment with 24 macro base stations (BSs) where
multiple faults in multiple BSs are induced simultaneously.
We test HYDRA performance against varying level of MDT
data sparsity i.e., user densities and compare it with state-
of-the-art ML based approaches for fault diagnosis. Results
show that while HYDRA can diagnose faults with same
accuracy (93% ) as the state-of-the-art algorithms when
impractical assumption of full MDT based coverage map
is made, in practical scenario of sparse MDT reports (e.g.
only 20 MDT reports/cell) HYDRA gives (67-45) 22%
improved performance yielded by the image enrichment
component for data enrichment and hybrid deep learning
based model for fault diagnosis.

For the future research, there are multiple directions that
can be investigated. One interesting direction with practical
impact would be investigation of techniques that can delineate
the two faults that show high confusion rate i.e., low Tx
power and cell outage. This can be done by leveraging
Bayesian or other conditional classifiers that can account
for priors by analyzing previous fault history. Inclusion of
more coverage anomalies e.g., cell individual offset (CIO)
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etc.

, exploration of different KPIs e.g., RSRP, that can help

improved diagnosis in the presence of more faults, and
investigation of problem specific ML and data enrichment
methods, are other few research directions among many
others.
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