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The emergence of pandemics poses a persistent threat to both global health and economic stability. While
zoonotic spillovers and local outbreaks may not be fully preventable, early detection of infections in individuals
before they spread to communities can make a major difference in containing an infectious disease and stopping
it from becoming an epidemic and then a pandemic.

In this paper, we propose a novel Artificial Intelligence (AI)-based pandemic prediction framework called
iPREDICT—a concept framework designed to leverage the power of Al and crowd-sensed data for accurate and
timely pandemic prediction. The core idea of iPREDICT is to leverage the deluge of data that can be harnessed
from connected and wearable biosensing devices. iPREDICT system then works by monitoring anomalies in the
biomarkers at the individual level and correlating them with similar anomalies observed in other members of
the community. Using Al-based anomaly detection in conjunction with analysis of the spatiotemporal growth of
the correlated anomalies, iPREDICT thus can potentially detect and monitor the emergence of a local outbreak
in near real-time to predict a potential pandemic.

However, not every outbreak has the potential to become a pandemic. We illustrate how tools like
graph neural networks can be leveraged to determine optimal thresholds as a function of a large number
of demographical, social, and geographical factors that determine the spatiotemporal spread of an outbreak,
thus quantifying the risk of it becoming an epidemic or pandemic.

We also identify essential technological and social challenges that require attention to transform iPREDICT
from an idea into a globally deployable solution for future pandemic prediction and management. To provide
deeper insights into iPREDICT design challenges and trigger research towards possible solutions we present a
COVID-19 based case study. The results signify the impact of variation in biosensing hardware, data sampling
rate, and compression rate on the performance of Al models that underpin various components of the iPREDICT
system.

1. Introduction than natural disasters like hurricanes and tsunamis. Predictive or early

detection systems for calamities have helped humanity in minimizing

While COVID-19 is not the first pandemic in the 21st century,
it is one of the most devastating ones taking millions of lives and
annihilating trillions of dollars from the global economy [1-3]. A
list of major pandemics in the last millennium is given in Table 1.
In the US alone, the social and economic damage of the COVID-19
pandemic has surpassed that of all the natural disasters in the last
century combined [4]. The absence of proactive and scalable outbreak
detection or pandemic prediction mechanisms is one of the core reasons
why pandemics spread and thus cause greater socioeconomic damage
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human fatalities and economic losses in the past. The prevention of the
catastrophic repercussions of potential pandemics requires establishing
a similar early detection system. Such a system needs to be scalable to
allow global surveillance and detection of infectious disease outbreaks,
and thus predict pandemics at the pre-emergence or local outbreak
stage.

Previous epidemiological studies of the pathogenic diseases [14-17]
and extensive insights from different coping strategies for the COVID-19
pandemic [18-23], provide evidence that the early stage detection of
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Significant human symptoms caused by global pandemics and related biological markers (biomarkers).

Pandemic Russian Flu Spanish Flu Asian Flu HIV/AIDS
1889-1893 1918-1920 1957-1959 1981-ongoing

[5] [61 [71 [8]

Swine Flu Middle east Ebola Virus SARS-CoV-2
2009-2010 respiratory 2014-2016 2019-ongoing
[9]1 syndrome [12] [13]

(MERS)

2012-ongoing

[10,11]

Influenza
A/H2N2

Influenza
A/HIN1

Influenza
A/HIN8

Pathogen

MERS-CoV Ebola,
Sudan, and
Bundibugyo

viruses

Influenza SARS-CoV-2

A/HIN1

Human
Immunodefi-
ciency Virus

Fever and chills
Cough

Sore throat
Diarrhea
Breathing difficulty v
Delirium

AN N NN
AN N
X

Dizziness
Malaise
Vomiting
Headache
Skin rash
Muscle pain
Insomnia
Heliotrope cyanosis v
Impaired color v
vision

Blurred vision v
Nausea

Eye redness

Ocular pain

Sore genitals

Mouth ulcer

Runny nose

Stomach pain

Internal bleeding

Respiratory distress

Loss of taste/smell

Myocarditis

AN N N WA N
AN

AN

Symptoms

RSx

4

AN NN
R Xx
X

AN NN

AN
AN

AN

Heart rate (4 v (4
variability

Skin temperature
Cough recording
Electrolyte
imbalance
Electroencephalo- v v v
gram (EEG)
Blood pressure
Skin images
Oxygen saturation (4
(Sp02)

Sweat rate v

Electrocardiogram v

(ECG)

Eye images/scans v (4
Photoplethysmogra- v

phy (PPG)

Biomarkers

AN

AN
RN X|RXKXN

AN
X

the pandemic when it is just a local outbreak can be a game changer in
containing the infection and preventing it from becoming a full-blown
epidemic and then pandemic. The current laboratory-based diagnostic
tests, that are often conducted after the infection has spread at the local
level, do not offer the continual screening, agility, safety, scalability,
and ubiquity to serve as a fast and proactive outbreak detection and
thus a pandemic prediction and prevention system. Without such a
system, COVID-19 cannot be expected to be the last pandemic of
its scale and resultant catastrophic impact on the global health and
economic system.

In Table 1 we provide an analysis of the major pandemics in
the last millennia in terms of the common symptoms they have pre-
sented among humans. We note that most infectious diseases present
symptoms that can be detected and monitored through commodity

wearable or ambient sensors. The biomarkers that can be measured
to screen for these symptoms and thus detect an infection are also
identified in this table. With advances in biosensing, nanotechnology,
and wireless communications most of these biomarkers can be mea-
sured nonintrusive at population level and analyzed centrally. This
observation combined with promising results and the impact of our
seminal work [23] on screening for COVID-19, anytime anywhere just
from the cough sounds by using an app installable on any commodity
phone or watch, motivates us to propose iPREDICT (see Fig. 1 for the
schematic of the iPREDICT) an innovative framework that can enable
in-situ and continuous screening at the population level to detect a new
outbreak of an existing or a new disease at an early stage thus serving as
potential pandemic prediction and prevention system that world direly
needs.
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Fig. 1. iPREDICT: An Al-enabled proactive pandemic prediction framework using wearable biosensing devices. *Biomarkers: SpO2(oxygen saturation), HRV (heart rate variability),
ECG (electrocardiogram), Kcal (kilocalories burnt), EEG (electroencephalogram), UV (ultraviolet exposure), PPG (photoplethysmography), pH (saliva pH), EDA (electrodermal
activity). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1.1. Related work

The topic of Artificial Intelligence (AI)-based pandemic prediction
and preparedness is still in its infancy. The complex and multidisci-
plinary challenges faced by researchers interested in pursuing this topic
that includes but is not limited to: the novelty of each pathogenic
spillover that usually leads to an outbreak; a large number of en-
vironmental, social, cultural, behavioral, demographic, political, and
geographical factors that determine if a local outbreak will become
pandemic; and the lack of required large multi-modal data to train
and test Al-based solutions are among the most common challenges.
Nevertheless, in the wake of COVID-19 some reviews have emerged
that highlight the need to use Al for future pandemic prediction and
technology-based interventions [24-29]. In [24] a survey of human
and technology-based intervention methods is presented to control the
spread of the virus among humans, specifically COVID-19. In [25]
the authors explore the use of state-of-the-art bio-sensing technologies
for disease diagnosis and management. In [26] the authors emphasize
the importance of interdisciplinary collaboration and the need for
developing rapid and accurate diagnostic tools by combining existing
research efforts in engineering, medicine, chemistry, and biosensing
technologies. In [30] a fairly latest research authors proposed the use of
a wearable device (near field communication (NFC)-based wristband)
to monitor individual biomarkers like oxygen saturation (SpO2), and
body temperature to detect and manage the spread of COVID-19.

These studies [31,32] have identified the need and potential for
developing an Al-based platform to control the spread of viruses among
humans. However, primarily these studies are focused on COVID-19
and not future pandemics, therefore these solutions are more of a
COVID-19 spread (hotspot) detection and not the pandemic prediction.
Furthermore, current literature lacks an in-depth understanding of
the challenges involved in designing a proactive pandemic prediction
framework. Two critical factors that exacerbate the problem of pan-
demic prediction are: (1) Though similar in nature each pathogen is
different based on the medium of spread, reproduction rate, incubation
period, and virus life. (2) The symptoms of disease among different
infected individuals will be different based on their age group, gender,
and lifestyle. Due to the aforementioned challenges, even if we try to
generalize the current solutions for future pandemics, data from the
previous pandemics alone would not suffice for training an accurate
Al-based solution. However, current research [30] proposes acquiring
free-life individualized data for robust Al-based model training for
infection detection, which has the potential to be a game changer in
proactive pandemic prediction.

1.2. Contributions and organization
To address the limitations in the current literature highlighted in

Section 1.1, we propose a novel surveillance system named iPREDICT
that can detect broiling infection spread and alert the authorities to take
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action to prevent future pandemic development. iPREDICT proactively
monitors the pre-emergence state of a pandemic by leveraging recent
advances in wearable biosensing, Al, and ubiquitous wireless networks.
The core idea is to collect the big data of biomarkers of the popu-
lation by leveraging readily available and widely used wearable and
ambient devices/sensors with ubiquitous wireless connectivity. The
biosensing devices encompass a broad range including smartphones,
smartwatches, wristbands, sensor patches, and a growing variety of
biosensors that can be embedded in clothing, shoes, and other acces-
sories [33-36]. Combining this data with an optimally designed and
trained backend Al-engine, and intelligent analytics can help to detect
an early infectious outbreak by monitoring the number of individuals
infected by a specific virus, at a certain geolocation in a given time.
The key contributions of this work can be summarized as follows:

1. We present iPREDICT, an Al-powered proactive pandemic pre-
diction framework that uses wearable biosensors. The frame-
work integrates expertise from various fields such as Al, epidemi-
ology, and distributed system software development, to provide
a comprehensive solution for accurate prediction of future pan-
demics. iPREDICT acquires essential biomarkers from free-life
biosensors, analyzes the transmission pattern of infectious dis-
eases based on location, and employs Al algorithms to raise
alerts and prevent the rapid spread of the disease and potential
pandemic outbreaks.

2. We provide a comprehensive overview of global pandemics from
the last millennium to serve as a foundation for iPREDICT.
The survey focuses on the pathogens that caused the previous
pandemics, their predominant symptoms in humans, and the
relevant biomarkers that can be autonomously used to track the
symptoms of epidemic-inducing diseases. Therefore iPREDICT
can use historical data from past pandemics, and the correlation
between disease symptoms and biomarkers to effectively predict
and prevent future pandemics.

3. We propose an approach that employs graph neural networks
(GNNs) to determine the pandemic prediction threshold, taking
into account various environmental, geographical, and biolog-
ical parameters. As the problem is complex, with no existing
mathematical model that includes all these parameters, the pro-
posed approach uses historical pandemic data to build a GNN-
based framework capable of predicting epidemic thresholds at
different scales and resolutions of the population. The expertise
of the authors in applying Al in different domains informs the
development of this method.

4. We present several crucial challenges both social and techno-
logical that must be addressed in the widespread deployment
of iPREDICT. With a strong focus on the engineering challenges
within our research domain, which include Al signal processing,
and cellular networks. The challenges we address include the
collection of audio data (cough sounds) using various smart-
phone devices, at different audio sampling rates (for the efficient
storage of audio data, which is critical for large-scale systems),
and the transfer of audio data in different file sizes and formats,
over cellular networks for analysis and diagnosis.

5. We demonstrate the feasibility of iPREDICT by leveraging our
previous work AI4COVID-19 [23] as a case study and provide an
analysis of the quantitative impact of four different engineering
challenges on the performance of AI4COVID-19 by considering
one biosensor (microphone) and one biomarker (cough sound)
out of a massive list of available biosensors and biomarkers in a
variety of biosensing devices, see Fig. 1.

The rest of the paper is organized as follows: iPREDICT and its
respective components, data privacy challenges, and respective miti-
gation methods are briefly discussed in Section 2. A detailed discussion
of a few of the salient engineering challenges for developing iPREDICT

Informatics in Medicine Unlocked 46 (2024) 101478

is provided in Section 3. The feasibility of iPREDICT with COVID-19
case study while addressing the associated engineering domain-specific
challenges is provided in Section 4. Section 5 concludes this study and
mentions future research directions.

2. iPREDICT: Proposed methods of (AI)-based pandemic predic-
tion framework and study design

iPREDICT presents a comprehensive framework given in Fig. 1
for future pandemic prediction comprising four integral components.
First, a personalized biosensing mesh forms the foundation, enabling
real-time data collection. Second, a curated array of biomarkers, ef-
ficiently gathered through the biosensing mesh, facilitates intricate
health assessments. Third, the synergy of Al models leverages individ-
ual biosensor data streams to facilitate personalized training, enhancing
predictive accuracy. Fourth, by diligently analyzing these streams, the
framework adeptly identifies burgeoning anomalies through the AI
models’ predictions, thereby enabling timely outbreak alarms, exempli-
fying iPREDICT’s potential in proactive pandemic prediction. A detailed
description of the individual components of iPREDICT is provided in
the following subsections.

2.1. Personalized biosensing mesh

Within the iPREDICT framework, we propose the “personalized
biosensing mesh” as a pivotal component, which capitalizes on the
capabilities of diverse wearable devices such as smartwatches and
smartphones. By ingeniously integrating these commodity wearables,
a comprehensive biosensing ecosystem is forged, capable of capturing
an array of vital biomarkers highlighted (in green color and dotted
border) in Fig. 1 such as skin temperature, SpO2, audio recording, heart
rate variability, and cough sounds (proposed an even detailed list of
biomarkers in Fig. 1. Moreover, a description and how these biomarkers
can be used as a symptom for the detection of various diseases is
presented in Table 2). These biomarkers can be acquired using readily
available wearable devices through their built-in biosensors [30,37].

In iPREDICT we propose the use of smartwatches and smartphones
as wearable devices due to their usage convenience, acceptance, and
availability to the masses. These wearable devices encompass an as-
sortment of sensors, each equipped to measure specific biomarkers. For
instance, heart rate sensors embedded in smartwatches meticulously
track pulse rate variability and resting heart rates [38]. Accelerometers,
commonly featured in smartphones can monitor movement patterns
and quantify activity levels. Also, both the devices have microphones
that can collect cough and audios that is used for respiratory disease
diagnosis with impressive results [23]. Moreover, cutting-edge wear-
ables incorporate photoplethysmography (PPG) sensors that ascertain
blood oxygen saturation, while electrodermal activity sensors gauge
stress levels. Temperature sensors integrated into devices like smart-
watches serve as sentinels, detecting fluctuations indicative of fever or
irregularities [39].

By harnessing this confluence of wearable devices and their inherent
biosensors, a rich and diverse multimodal data stream is cultivated.
The cough sound data is analyzed for the preliminary diagnosis of sev-
eral respiratory diseases like Bronchitis, Pertusis, and COVID-19 [23].
Likewise, heart rate data, culminate in a comprehensive portrayal of
an individual’s activity levels and overall health. We highlighted a few
of the biomarkers (cough, audio i.e counting, heart rate) that showed
promising results in COVID-19 screening [23,40]. This cumulative
biomarker dataset serves as the foundation for constructing a mul-
tidimensional individual health profile, emblematic of the iPREDICT
framework’s prowess.

2.2. Creation of biomarker profiling
The next component of iPREDICT is the creation of a comprehensive

database of historical biomarkers of the population, we call it Health-
state database in the iPREDICT framework presented in Fig. 1. Table 2
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Table 2
Description of different biomarkers for disease diagnosis.
Biomarker Description
Breath Provides latent information via sound, smell, and intensity about a person’s health. [41]
Audio Recording Carries latent features that can be used in the acoustic analysis of respiratory diseases. [23]
Step Count Provides insights about the lifestyle of a person that can relate to overall health. [42]
Burnt Kilocalories Can be associated with cachexia which can be caused due to cancer or other chronic diseases. [43]
SOS Alert Can be used in emergency cases when a person’s vital signs fall outside a normal range. [44]
Heart Rate Is a major biomarker for respiratory disease diagnosis. [41]
Sweat Can be used for cystic fibrosis that causes damage to lungs and digestive system. [45]

Sedentary Movement
Skin Temperature
Skin Photos

Heart Rate Variability
Oxygen Saturation (SpO,)
Electrocardiogram
Blood Pressure

Saliva pH

Blood Glucose

Cough

Breathing Rate
Retinal Images
Electroencephalogram
Photoplethysmograph
Ultraviolet Exposure
Electrodermal Activity

Can be used for cardiovascular disease diagnosis. [46]

Is a major symptom of the diseases that cause fever. [47]

Provides information about allergic viruses.

Is a major biomarker for cardiovascular disease diagnosis. [41]

Can be used as a biomarker for respiratory disease diagnosis such as COPD. [48]

Is widely used biomarker for coronary heart disease diagnosis. [41]

Is a basic biomarker used by physicians for cardiovascular disease diagnosis. [41]

Is used as a biomarker for stress examination and monitoring. [49]

Is a commonly used biomarker for the diagnosis of diabetes. [41]

Contains the signature of several respiratory diseases e.g. asthma, pertussis, bronchitis etc. [23]

Can be used as a biomarker for several diseases and conditions such as asthma, COPD, and pneumonia. [41]
Is used as a biomarker for the diagnosis of diseases like chronic kidney problems and anemia. [41]

Is a widely used biomarker for neurodegeneration problems like epilepsy, sleep disorders, and brain injuries. [41]
Is a biomarker used for cardiovascular disease detection. [50]

Can be used as a biomarker for systemic oxidative stress. [51]

Is used as a biomarker for the diagnosis of anxiety disorder and Parkinson’s disease. [52]

Tears Contains useful information in the fluid that can be used for the diagnosis of ocular and breast cancer. [53]

presents a list of biomarkers and the respective description of what
latent information these biomarkers provide which can be exploited
for the disease diagnosis. Healthstate database consists of biomarker
measurements of individuals either labeled as ‘healthy/normal’ or as
‘not normal’ i.e., profiles of individuals that have been pre-identified
to have some medical condition. These profiles will enable the detec-
tion of anomalous data points that lie within the health data stream
of the individuals. However, biomarker profiling comes with several
challenges brought by the variability and complexity of the biomarker
data. These challenges can be broadly categorized into two categories
explained below:

1. Challenge 1: Inter-person Variability: The creation of a per-
sonalized biosensing mesh comes with a complexity challenge.
One way to address this is to create the models on edge devices,
and only send triggers along with select when anomaly is noted
for central examination by Al and or medical and public health
professionals. To cope with the low computational power of the
edge devices, instead of advanced deep learning (DL) models,
simpler template matching methods can be used.

2. Challenge 2: Intra-person variability: Non-infectious diseases,
seasons, lifestyle changes, and stress can cause variations. Ad-
dressing this challenge requires not only the fusion of multi-
ple biomarkers that reflect a multi-system state of the human
body but also deep medical expertise. As an example, HRV is
a biomarker that drops usually with the onset of most type of
sickness. However, these sicknesses may not be the cause of
concern for the iPREDICT system as they may not be infectious.
Therefore, a reliable method to detect the spread of an infec-
tion is to have a higher-level model, that looks for patterns of
anomalies among people who have been in close proximity. For
example, if HRV of multiple people who have been in close
contact starts dropping within a time window, then it can be
considered as a case for further analysis for iPREDICT system.
This further analysis is carried out in iPREDICT components
described in the next sections.

2.3. Al-based anomaly detection using biomarker profiles
In tandem with the challenges highlighted in the previous sec-

tion, the high dimensionality (multiple biosensors capturing multiple
biomarkers) and the large volume of data in an individual’s biomarker

profile add to the complexity of the anomaly detection component
of iPREDICT. Due to such challenges, we propose a potential disease
outbreak to be modeled as a time series anomaly detection problem.
To achieve this, we propose a novel mechanism for identifying anoma-
lous readings at an individual’s biomarker level for detection of viral
infections, at their onset. The biosensor time series data will be used
to train an Al model for identifying individuals with biomarker levels
deviating from their normal trend. Thus, the trained AI models will be
patient-specific, mitigating the effects of intra as well as inter-personal
variability and promoting precision medicine. Time series anomaly
detection can be achieved using several machine learning (ML) models
such as ARIMA, SARIMAX, etc. [54], and DL models (e.g., recurrent
neural networks (RNNs), long short-term memory (LSTM) [55], and au-
toencoders [56]). The predictive results from these models will identify
a potential disease outbreak and suspected individuals will be further
tested to verify if a cluster of such anomalous data is present in close
spatio-temporal proximity.

2.4. Adaptive thresholding for disease prevalence

This component of iPREDICT identifies the trends of similar irregu-
larities in the biomarker values of multiple individuals residing in close
proximity over a brief time duration. Once the cluster of infected people
is identified, iPREDICT performs as explained in algorithm 1, triggering
an alarm based on a disease-specific threshold to alert the authorities
about a potential outbreak. We propose a pandemic threshold » based
on several magnitude/number (N), area (A), and time (T) of infection
parameters given in Fig. 2. The threshold # is modeled based on NAT
in Eq. (1).

n(Ng, A,T) > ny @

Where N, represents the number of infected individuals by the
disease d, A is the area under consideration and T represents time,
while 5, represents the alarm threshold of a specific infectious disease.

Finding the quantitative value of 7, is a challenging task for the
epidemiology research community. An even bigger challenge lies in
adaptively setting this threshold to minimize the intervention time for
the authorities to take necessary measures. While we know from the
epidemiology literature [57-61] that NAT depends on a wide range
of factors as listed in Fig. 2, we do not have a quantitative represen-
tation of NAT that includes all the factors of Fig. 2, and developing
a quantitative understanding will take decades of research by the



M.S. Riaz et al.

Informatics in Medicine Unlocked 46 (2024) 101478

Super Markets

Metro Stations

I
|
Illiteracy Rate !

1

Family Size :

1

1

1

1

1

Pharmacies

) WEILS
Education Rate

Old Age Ratio
°
°

Gas Stations

Theatres

Threshold

Banks

Cafes

School/Colleges

Bus Stops
Subways
Hospitals

Play Areas

r--

Number of

Fig. 2. A qualitative representation of the pandemic threshold based on NAT using associated parameters from epidemiology.

epidemiology research community or we may never know its closed-
form mathematical equation. The challenge is due to the diversity of
the nature of infectious diseases (reproduction rate, nature of spread
(airborne or touch), association with other infectious diseases, etc.) and
general human behaviors (mobility pattern, response to intervention
policies, etc.). Therefore, leveraging the capability of Al to learn such
complex relationships between a large variety of parameters and the
availability of data on the recent pandemics, we propose a GNN-based
framework for alarm management as the next component of iPREDICT.
Algorithm 1 False alarm management using a disease-specific
threshold
Require: number of infected profiles N, in an area A over a time T
and a infectious disease specific threshold 7,. Sig, disease signature
based on respective biomarker profiles. DB, database contain-
ing known disease profiles, and DB, containing unknown/novel
disease profiles.
Ensure: Boolean value of TriggerAlarm

1: N; <0

2: while f(N,,A,T) <n, do

3: Ny, < N;+1

4 TriggerAlarm < False

5 if f(N,, A, T) <n, then

6: if Sig; Belongs to DB, then

7: DB, < Sigy,

8 else if Sig; Belongs to DB, then
o: DB, < Sig,
10: end if
11: else if f(N;,A,T) > n, then
12: TriggerAlarm < True
13: if Sig; Belongs to DB, then
14: DB, < Sig,
15: else if Sig, Belongs to DB, then
16: DB, < Sig,
17: end if
18: end if

19: end while

2.5. Population resolution and scale-agnostic graph neural network system
for alarm management

To overcome the challenges highlighted and discussed in the previ-
ous section, we propose an Al-enabled data-driven approach to learn

pathogen and population dynamics-specific values for ,; by learning
from historical data of epidemics. We aim to take benefit from the
recent advances in DL on graphs, i.e., Graph Neural Networks [62]
which learn to predict the #, by performing convolutions on a graphical
representation of the population and its features listed in Fig. 2.
Extensive literature in epidemiology exists where historical epi-
demic data is used for forecasting the future state of an epidemic.
Firstly, compartmental models such as SIR [63], SIERD [64], and
SIRV [65], etc., comprise of systems of ordinary differential equations
which predict epidemic parameters and spread. Secondly, ML models
like SARIMA [66] predict future infection rates through time series
forecasting on past infection rates. Thirdly, time series forecasting is
also performed via Deep Neural Networks (DNNs) such as LSTMs [67-
69]. However, these approaches rely solely on the temporal aspect of
the epidemic, i.e., historical infection rates, while not accounting for
the spatial dynamics of population such as density, distribution, inter-
mobility, and population characteristics like hygiene, humidity, etc.,
which can be vital in driving an epidemic. This is evident from [70],
where integrating rainfall data with infection rates significantly im-
proved the forecast of Dengue, since humidity and stagnant water
caused by rain breed Dengue carrier mosquitoes. Similarly, [71] shows
that meteorological factors like atmospheric pressure positively influ-
enced the forecast of Influenza B and [72] examined the influence
of mobility data on Influenza spread modeling. Despite such studies
advocating for the efficacy of spatial features in epidemic prediction,
an all-encompassing predictive model with spatial as well as temporal
features is yet to be established. Recently, several studies [73-78]
emerged where a population is modeled as a knowledge graph such
that it captures the temporal characteristics of population as graph
node features and spatial dynamics as well as mobility as graph struc-
ture i.e., adjacency matrix. Such graphical modeling aligns with the
widespread use of graphs in epidemiology where spot maps, heat maps,
and area (Patch or Choropleth) graphs are employed to illustrate the
geographical spread of outbreaks on a 2D plane [79]. However, the
representation of such maps as knowledge graphs which can train
DL models, and the DL on graphs with Graph Neural Networks are
emergent research directions in Al which have demonstrated improved
prognostic capability over classical ML and DL for epidemic forecast-
ing [73-78]. Therefore, based on (1) the limitation of compartmental,
ML, and DNN models to capture population features and mobility, (2)
the conventional capability of graphs in epidemiology to encapsulate
these factors effectively, and (3) the recent advancement in DL on
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Fig. 3. A Graphical modeling of historical epidemic data and training of Graph Neural Network to predict ,.

graphs to build predictive models from spatio-temporal graph datasets,
we suggest a GNN model that learns from the dynamic graphical
representation of populations during past epidemics to predict 5, future
epidemics.

In [73,75,77,78] Graph neural networks embed graphs of US coun-
ties as low-dimensional latent embeddings which capture the popula-
tion characteristics. As graph features (e.g., infection rates) vary against
time, the embeddings of population graphs from past time {7 — d,7 —
d+1,t —d+2,...,t} are treated as a time series with either Trans-
former or LSTM for forecasting of future ¢+ 1 infection rates. However,
these approaches do not take into account the resolution and scale of
the population graphs as variables. As the resolution increases from
country to state to county and further, the properties of the population
graphs change and hence a GNN model trained with data exclusively
at low resolution (such as at the state level) cannot be employed at
high resolution such as zip code and vice versa. In [78] and [77],
the authors acknowledge resolution as a significant variable, but the
multi-resolution nature of their model comes from the clustering of
graph nodes and making condensed graphs from the pooled features
of the clustered nodes. However, the clustering of graph nodes is data-
driven therefore it disregards the natural clustering of regions due to
standard geographic divisions e.g., all counties in one state can exhibit
similar characteristics due to proximity, inter-mobility, cultural and
environmental similarities, so they should be clustered together. The
clustering of regions based on geography takes advantage of Tobler’s
first law of geography [80], which states that spatially closer regions
have higher similarity than spatially distant regions. Such geography-
aware clustering, therefore, eliminates the need for training data and
hyper-parameter search required in data-driven clustering. In addition
to resolution, the scale of the graphs is a bottleneck. For instance, [77]
makes a graph with all the counties in the US as nodes. Given that there
are 3142 counties and equivalent regions in the US, one graph will
contain as many nodes and up to 4.9 million edges. Further increasing
the resolution will result in a graph of 40,000 nodes = no. of five-
digit zip codes in the US [81]. On the other hand, the lower the
resolution, the smaller the graph but the crucial early-stage infection
data is lost. For instance, if all the US states are modeled as a graph of
50 nodes (high scale, low resolution), then the pathogen breakout can
be detected when it is already epidemic across states while the goal
should be early detection during spreads over one county. Therefore,
the amount of area covered in a graph, i.e., the scale of the graph should
be inversely proportional to the resolution of the graph. Building on this
understanding, we propose a multi-resolution multi-scale hierarchical
approach for modeling populations as graphs and training an end—end
resolution and scale-agnostic GNN which learns to predict pandemic
alarm threshold 7, from population features listed in Fig. 2.

We divide the population in a nested manner based on the Standard
Hierarchy of Census Geographic Entities [82], from micro to macro-
region i.e., ZIP Code Tabulation Areas (ZCTA), county, and state. The
set of all ZCTAs in one county forms a county-level graph as shown
in Fig. 4. Similarly, all counties in a state form one state-level graph,
and so on. Therefore, the total number of spatial graphs is, S,,, *
Covg * Zg, where S, = 50 for the states in the US, C,,, is the
average number of counties in US states, and Z,,, is the average
number of ZCTAs in US counties. For each geographic level, there can
be multiple temporal graphs that have the same spatial structure but
vary in node/edge features as each temporal graph consists of historical
data from time ¢ to t + T where T is the time span of a week.

To summarize, the historical epidemic data is to be modeled into
a set of graphs {G}|h € H,t € T} where H is the spatial granular-
ity/hierarchy such as {ZCTA, County, State} and 7 is time granularity
of data such as {week, week, ..., weekr}. Each graph G in G is repre-
sented as G = (V, E) where V is the set of nodes representing regions at
hierarchy 4 and E is the set of edges between nodes. Each node has a set
of features X = {x(,x,,...,x,} which represent NAT features listed in
Fig. 2. Hence, in node features, we combine a plethora of data sources
which together affect the risk of pathogen breakouts. Historical data
of past epidemics and pandemics consisting of the number of infected,
susceptible, recovered individuals, etc., over time in a region form the
dynamic node features. Properties of the population, such as census
data, population density, death/birth rate, poverty, literacy rate, age
and gender demographics, etc. along with environmental factors which
highlight the population’s limitations and resources such as weather,
pollution, and terrain form the static features. One node thus consists
of all the relevant features to qualify the breakout within that node
i.e., a population section (such as Zip code no. 11005 or the Queens
county, depending on whether the population resolution is zipcode-
level or county-level). To join nodes with edges, we determine the
geographical connectivity between regions by using spatial distance as
well as road network density and borders between the regions which
are modeled as nodes. For each edge, the weight e is a function of
human mobility pattern from Facebook Data for Good [83] which
uses the location history from mobile devices to track air, road, or
train travel between two regions and also specifies normal mobility
ranges of communities, cohabitation and co-movement of groups. So, in
summary, the graphical modeling of historical epidemic and pandemic
data is such that the node features represent all the variables that can
quantify pathogen spread within a region while edges and edge weights
represent the variables that account for the spread of a pathogen from
one region to another.

The most significant aspect of this geographically nested graph
dataset is that 5, from the lower hierarchy serves as a node feature in
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the higher hierarchy graph as depicted in Fig. 4. In the training dataset,
the 5, at each hierarchy level comes from the averaging of 1, of nodes
at the lower level, e.g.,

C,
Z-,NYSMM n;
= ’ )

INYState = 100 srarel

Where Cyygiare 1S the number of counties in the New York state.
At the inference time, however, the lower hierarchy 5, comes from
the trained GNN which learns to predict 5, at varying resolutions and
scales.

This dataset of spatio-temporal graphs described above is ingested
by a Graph Neural Network (GNN) as shown in Fig. 3, specifically
Diffusion Convolution Recurrent Neural Network (DCRNN). DCRNN,
introduced by Y. Li et al. [84] is a type of GNN designed for addressing
spatio-temporal forecasting tasks. It combines diffusion convolutional
layers and recurrent layers to capture spatial and temporal depen-
dencies, respectively, and integrates them into a unified framework.
The diffusion step captures spatial dependencies by propagating in-
formation through the graph structure of the data. It allows each
node to aggregate information from its neighboring nodes. The recur-
rent step captures temporal dependencies by incorporating historical
information from previous time steps using a recurrent architecture,
such as a Gated Recurrent Unit (GRU). The matrix multiplication in
GRU is replaced with the diffusion convolution described above, thus
integrating the diffusion, convolutional, and recurrent steps in DCRNN,
i.e., effectively modeling both the spatial dependencies among differ-
ent locations in the graph and the temporal dependencies over time.
DCRNN transforms the input node features into lower dimensional
embedding in latent space. The embeddings are optimized at every
training step to best capture the information from node features and
node neighbors. The latent embeddings from all the nodes are then
combined by either concatenation, mean pooling or trainable pooling
layers such as hierarchical pooling [85] and Self-attention graph pool-
ing [86]. Then, the pooled embedding is passed through fully connected

neural network layers to finally output #,, a real number that embodies
the threshold for NAT parameters such that when #(N,, A, T) > ny,
the alarm is triggered in the system as shown by Fig. 1. As GNNs are
independent of the graph structure, a GNN such as DCRNN trained on
graphs of multiple resolutions and scales, can learn features that are
resolution and scale-agnostic. Hence, the resultant trained GNN can be
deployed at ZCTA, county, or state level with the shared weights as
shown in Fig. 4.

2.6. Verification and preventive measures

Once the adaptive threshold is learned and the false alarm mainte-
nance block accurately triggers the alarm when needed, it is essential
for the respective authorities to verify the presence of the spread-
ing disease. Among the methods that can be used for verification
include laboratory testing of potentially infected individuals. More-
over, it is imperative to classify if the spread is from a disease that
although infectious, has no risk of escalating as a future pandemic, or
a known/unknown disease that can break out into a pandemic. The
pathogens that have the risk of evolving into a pandemic can be either
re-emerging or newly emerging. For the re-emerging pathogens, it is
crucial to inform the health authorities at the earliest as the preventive
measures required to curtail its spread are well-defined and priorly
known. Among these preventive measures include social distancing,
traveling constraints at this geolocation, promoting better personal
hygiene measures, and could also include medication based on prior
experience. On the other hand, if the alarm is triggered by a newly
emerged pathogen, it becomes essential to alert experts in the fields
of pathology, virology, and epidemiology. Because as their research
and input expertise on the characteristics (spread pattern, reproduction
rate, and mode of spread i.e. airborne or using touch) of the newly
emerged pathogen become the basis for our next steps in pandemic
outbreak prevention and will also populate the database of unknown
infectious diseases.
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Fig. 5. A representation of engineering challenges associated with the implementation of the pandemic prediction framework.

2.7. Data privacy challenges and proposed mitigation methods

The collection of population-level biomarkers data for iPREDICT
introduces inherent challenges related to data privacy. Given the sen-
sitive nature of health-related information, ensuring the confidentiality
and privacy of individuals participating in biomarkers data collection
is paramount. We discuss some of the key challenges and respective
mitigation methods as follows. We anticipate that this paper will lead to
further research that will address the privacy concerns in more detail.

1. Informed Consent and Participant Awareness: Ensuring compre-
hensive informed consent and participant awareness about the
potential risks and uses of biomarkers data can be challenging
at the population level. To alleviate this challenge we develop
clear and easy-to-understand materials to inform participants
about the purpose of biomarkers data collection, the poten-
tial risks, and the privacy safeguards in place. We developed
user-friendly interfaces to enhance participant understanding
during the consent process for our previous work for cough data
collection [23].

2. Individual Identifiability: The risk of individual identifiability
using biomarkers data poses a significant concern. The individ-
ual biomarker profiles may carry unique signatures, increasing
the risk of re-identification. This challenge can be mitigated
by leveraging anonymization techniques, such as differential
privacy [87], to protect against the re-identification of individ-
uals. The introduction of controlled noise during the creation of
individual biomarker profiles 2.2 ensures individual data points
cannot be isolated.

3. Secure Data Transmission and Storage: The transmission and
storage of biomarkers data demand robust security measures to
prevent unauthorized access and data breaches. To mitigate this
challenge we propose two approaches that can be used based
on the nature of the biomarker data and the need to store it
in a centralized database or not. One approach is the use of
encryption protocols for secure data transmission and the imple-
mentation of stringent access controls and encryption for data
storage. The second and more decentralized approach is using

federated learning [88] which will eliminate the need to transfer
data, instead distributed individual models can be trained and
their respective learning will used for decision making. However,
leveraging federated learning will lead to further challenges and
researchers are finding ways to overcome them [89].

Addressing data privacy challenges in population-level biomarkers data
collection requires a multifaceted approach. Given iPREDICT is a con-
cept framework we anticipate that it will lead to in-depth research on
each of its components which will address respective potential privacy
challenges and mitigation strategies.

3. Engineering challenges in implementation of iPREDICT

A variety of challenges in the medical and engineering domains will
be faced when implementing iPREDICT. The challenges in engineering
arise from devices used to record a variety of biomarkers using biosens-
ing technology, see Fig. 1. The recording devices involved vary in
terms of their biomarker-capturing mechanisms, hardware components,
and software capabilities (operating system, middleware, etc.) that
introduce variability and randomness in the data collection process.
Moreover, environmental factors such as ambient noise can also impact
the performance of iPREDICT. Therefore, in this study, we identi-
fied and quantitatively assessed several key engineering challenges
encountered in diagnosing COVID-19 based on cough sound biomarker,
recorded using a smartphone microphone. The following engineering
challenges included questions related to audio signal processing, such
as the effects of contamination of cough sound with the environmental
noise, variability of self-induced noise (by active circuitry, and Brow-
nian movement of air particles) by a microphone [90], variation in
sampling frequencies (in order to capture high-quality cough samples
needed for Al-based pandemic prediction), and compression rates for
efficient storage and transmission of cough samples.

3.1. Environmental noise and noise variations

Recording cough sounds via smartphones in a public setting in-
duces environmental noise and reverberation which contaminate the
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recording and consequently compromise the accuracy of the ML mod-
els for disease diagnosis. While reverberation can be characterized
by sound propagation models in indoor and outdoor settings, [91]
environmental noise can vary greatly based on the surroundings. The
noise amplitude and frequency distribution along with the signal-to-
noise ratio in each sound recording can be unique. Moreover, even in
the same ambient setup, the microphone-to-mouth positioning in terms
of distance and angle causes noise variations in recordings. Although
noise can be reduced by leveraging filtering and smoothing algorithms,
this results in the elimination of high-frequency components in the
recording. However, these high-frequency components are not always
noise-induced and can be crucial for accurate cough-based diagno-
sis and hence, cannot be completely removed. Moreover, ML models
trained on noiseless data or data with limited noise scenarios tend to
overfit and cannot be generalized to real-life settings where infinite
types of environmental noises exist. Therefore, the challenge is to build
noise-aware ML models that are robust to environmental distortions at
training and inference [92].

3.2. Heterogeneity of microphones

Another factor that complicates ambulatory sound-based cough di-
agnostics is the heterogeneity of recording devices at three levels:
(1) varying device types (e.g., cellphones, laptops, lapel microphones,
and smartwatches); (2) devices of the same type from different man-
ufacturers (Apple, Google, and Samsung, etc.) with varying specifi-
cations frequency response, phase response, sensitivity, noise level,
sound pressure level, signal to noise ratio, and; (3) devices with the
same specifications (same brand and same model) that exhibit electro-
acoustic variations due to inherent manufacturing process uncertainties
of microphone chips [90,93]. Our focus is on the differences in record-
ing microphones from the same or different manufacturers. Sound
recorded via different microphones is not identical and hence affects
the performance of iPREDICT. Therefore, the challenge is to generalize
the ML models beyond the electro-acoustic differences in microphones.

3.3. Diversity in audio sampling rate

In conjunction with the hardware dissimilarities of the microphones
presented in the previous section, software characteristics such as
the sampling rate (at which the audio is recorded) generate sound
recordings with variable size and quality. Thus, poses the caveat of the
trade-off between ML model accuracy and speed (audio with a higher
sampling rate will take more time to process, which will compromise
on efficiency of the ML model but yield more accurate results). We
highlight the audio sampling rate diversity challenge by presenting
the quantified impact of 4 different sampling rates in Section 4. The
results present a comparative analysis of different sampling rates on the
diagnosis of COVID-19 using cough audio data. The cough sounds can
have frequency components up to 20 kHz [94]. Therefore we highlight
the impact of 8 kHz, 22.05 kHz, 44.1 kHz, and 48 kHz sampling rates
in the case study observing the Shannon-Nyquist sampling theorem
(i.e., the sampling frequency must be more than double the highest
frequency component) [95].

3.4. Diversity in audio file format

In addition to the sampling rate, the data is lost from the sound
recordings through compression as they are stored on the recording de-
vices using different file formats. Although lossless audio formats such
as WAV, AIFF, ALAC, and FLAC exist, their larger storage size renders
them inefficient for mobile transmission over the network, storage in
recording devices and cloud, and consumption by the ML models at
scale. Therefore, compression formats such as 3GP, WMA, AAC, M4A,
and MP3, with MP3 being the most common [96] reduce the size of
the audio file. Furthermore, the reduced file size is efficient to store
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as well as transmit over the network, to process the audio file on the
cloud for biomarker profile signature creation and matching for the
potential pandemic prediction. However, file compression does not only
lose data but also, does so in favor of keeping human audibility while
discarding human indiscernible components. Moreover, to discriminate
the nuances of cough originating through closely related respiratory
disorders, the frequency components beyond human audible interest
can be significant. In addition to the data loss, compression formats also
engender the challenge of portability over many codecs used by dif-
ferent recording software. A generalized cough-based diagnosis system
must therefore be able to process different codecs or re-encode variable
formats into one while being robust to the compression rates and
mechanisms of varying formats. This challenge is further highlighted
and quantified in Section 4.

4. Results and discussion: A case study to show feasibility of
iPREDICT

We leverage our seminal work AI4COVID-19 [23] as a case study
to show the feasibility of iPREDICT. By exploiting one biomarker
(cough sound) and one biosensing device (smartphone microphone) we
analyze and quantify the engineering challenges discussed in Section 3.
These challenges come from: (1) audio data acquisition, (2) data trans-
fer over the wireless network, (3) data pre-processing for noise removal
and noise robustness, and, (4) the diversity of data acquisition devices.
Interested readers can refer to [23] for the details regarding the multi-
pronged data-driven Al model, cough sound features, and dataset used
in AI4COVID-19.

The first challenge is in the audio data acquisition phase due to
the variable sampling rates discussed in Section 3 and highlighted in
Fig. 5. We present an analysis of Al-based COVID-19 diagnosis using
cough data acquired at 4 different sampling rates 48 kHz, 44.1 kHz,
20.05 kHz, and 8 kHz. Fig. 6(a) presents a comparison of COVID-
19 diagnosis performance using a variation in true positive and true
negative rates (sensitivity and specificity). The results in Fig. 6(a) show
that the sensitivity of COVID-19 diagnosis decreases from 0.765 to
0.721 when the sampling rate of cough sounds used for investigation
is decreased from 48 kHz to 8 kHz. Moreover, the specificity is also
reduced from 0.847 to 0.844, 0.827, and 0.782 for the respective sam-
pling rates. The drop in performance is a function of 3 factors that are
involved in the process of up and downsampling of cough data. These
factors include interpolation, anti-aliasing, and decimation [97]. This
challenge can be further investigated as future work, as an optimization
problem between diagnosis performance (diagnosis accuracy of the ML
model) and efficiency (time taken by ML model for the inference) of
the proposed framework.

Once the audio data is acquired by a biosensor, it needs to be
transmitted over a wireless network that has different transmission
capabilities. This requires audio data to be compressed, which has
several compression formats and bit rates highlighted in Section 3
and Fig. 5. To further highlight this challenge we present MP3 file
format compressed at 320 kbps, 192 kbps, 128 kbps, and 96 kbps bit
rates, to see the effect of cough data compression on the COVID-19
diagnosis. Fig. 6(b) shows a performance deterioration in sensitivity
from 0.751 to 0.714 when the compression bitrate of MP3 is changed
from 320 kbps to 96 kbps. Also, the specificity is reduced from 0.842
to 0.79 for the respective bitrates. The drop in performance is a
function of quantization error, as well as data encoding [98]. Both, the
quantization error and data encoding compromise the quality of audio,
which leads to losing some latent features such as MFCCs, band power,
and energy, (a comprehensive list is given in Fig. 5) that are important
for COVID-19 diagnosis. The detrimental impact of file compression
can be further investigated using more sophisticated ensemble methods
(e.g. CNN+XGBoost, CNN+LSTM, and CNN+SVM) that are robust to
noise caused by data compression [99].
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pre-processing methods (d) device diversity, used to acquire training data.

The third challenge arises before transferring the audio data to the
ML model, due to the use of pre-processing methods to mitigate the
impact of environmental noise in sound recording. There can be two
approaches to reduce the effect of environmental noise on the efficiency
of the ML method: (1) remove the environmental noise, (2) add more
noise to the training data to make the ML model robust to learning
from the noisy data. We present the results of spectral gating (SG) as
a noise removal method and time stretch (TS) and pitch shift (PS) as
noise robustness methods for this case study in Fig. 6(c), while more
methods can be found in Fig. 5. Fig. 6(c) shows that TS and PS improve
the sensitivity from 0.765 to 0.793 and 0.812 respectively, and also
achieve an enhanced specificity for both TS and PS. In contrast, the
noise reduction technique SG brings the sensitivity down to 0.746 from
0.765, the specificity is also decreased slightly. A major reason for
the drop in performance can be the nature of cough data which is
more like noise itself, and when a static noise removal technique like
SG is applied it removes some of the latent frequency features that
contribute towards the COVID-19 diagnosis, which leads to slightly
poor performance. The slight change in the performance of the ML
models can be attributed to the lack of variation in the environmental
noise due to the controlled nature of the environment setting (hospital
setting) used for the data collection for this feasibility of the case.
With more diverse data gathering settings, it is expected to have more
noise variations, and hence it remains crucial to further investigate
the impact of noise on the performance of the ML models. The fourth
challenge results from the variance in audio data recording devices.
The devices can have different hardware (microphone, speakers, etc.)
and software (operating system, middle-ware, etc.) based on brand,
make, and model. In this case study, we focus on diversity based on the
microphone because that is used to record the audio data. We present
an analysis of a diverse set of devices consisting of an iPhone XR,
Huawei Y7, and Samsung C5. We trained the AI4COVID-19 framework
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on data acquired using an Android device and tested on data from
iPhone XR, Huawei Y7, and Samsung C5. The results in Fig. 6(d), show
a decrease in sensitivity from 0.765 to 0.718 and specificity from 0.847
to 0.784, for the cough data that has an added noise signature of iPhone
XR. In contrast, for the Android devices (Huawei Y7 and Samsung C5)
the dip in performance is relatively lesser. The potential reasons can
be (1) the software of Android devices differs from an iPhone device,
and (2) the microphone chips differ for different mobile phone brands.
These diversities contribute to the self-noise profiles of each device
which leads to variation in the diagnosis performance.

5. Conclusion

The idea we presented in this paper is a concept framework based
on the emergence of multi-disciplinary research enabled by advances
in artificial intelligence, omnipresent wireless networks, and a surge
in the use of smart biosensing devices for health and fitness pur-
poses, can make the pandemic prediction goal attainable. iPREDICT—a
holistic concept framework designed to forecast an epidemic based on
crowd-sourced biomarkers acquired using biosensing wearable devices.
iPREDICT performs real-time anomaly detection on biosensing profiles
of humans in a spatio-temporal domain to alert the relevant authorities
to take respective actions at the pre-emergence stage. The alert-worthy
number of cases in any population is quantified through a thresh-
old which is learned by graphically modeling the data of historical
epidemics and training a GNN-based threshold predictor. The GNNs
trained over graphs of various populations predict the epidemic alarm
threshold at variable scales and resolution of any region. Timely actions
based on the prediction output can prevent an epidemic from becoming
a pandemic. We present our previous work AI4COVID-19 as a tool
to show the feasibility of iPREDICT and the underlying engineering
challenges to predict a COVID-19 like pandemic in the future. The
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case study results provide an analysis of several software (sampling
rates to record audio and compression rates to transfer audio efficiently
over the network) and hardware (audio recording device diversity)
related challenges, associated with pandemic prediction based on sound
analysis. We present an extensive framework for real-time pandemic
prediction based on several state-of-the-art emerging technologies and
uncover several research questions with the hope of extricating hu-
manity from another devastating pandemic. Based on our research
we identified some research directions that still need to be explored
such as data privacy challenges for a framework that works at the
population level. Data quality and standardization (we showed the
results deterioration due to low-quality audio in our case study), and
engagement and participation.
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