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ABSTRACT We present the issue of monetarily incentivized forwarding in a multi-hop mesh network
architecture from an economic perspective. It is anticipated that credit-incentivized forwarding and relaying
will be a simple method of exchanging transmission power and spectrum for connectivity. However, gateways
and forwarding nodes, like any other free market, may create an oligopolistic market for the users they
serve. In this study, a coalition scheme between buyers aims to address price control by gateways or nodes
closer to gateways. In a Stackelberg competition game, buyer agents (users) and sellers (gateways) make
decisions using reinforcement learning (RL), with decentralized Deep Q-Networks to buy and sell forwarding
resources. We allow communication links between the buyers with a limited messaging space, without
defining a collusion mechanism. The idea is to demonstrate that through messaging, and RL tacit collusion
can emerge between agents in a decentralized setup. The multi-agent reinforcement learning (MARL) system
is presented and analyzed from a machine-learning perspective. Moreover, MARL dynamics are discussed
via mean field analysis to better understand divergence causes and make implementation recommendations
for such systems. Finally, the simulation results show the results of coordination among the users.

INDEX TERMS Multi-agent, reinforcement learning, IoT, incentivized forwarding.

LIST OF SYMBOLS
The following list describes the symbols used within the
paper

L Gateway load.
α Learning rate.
η Load induced latency penalty.
γ Discount rate mapping to future rewards.
F Reward matrix.
G Set of gateways.
Pz Probability vector of all actions of the pop-

ulation of agents.
U Set of users.
Q State-action Q point in the Mean Field The-

ory analysis.

v Speed vector of agents in the Mean Field
Theory analysis.

ψ The flow density of the agents.
ε Exploration factor.
ζx The suggestions vector.
A Set of all valid actions in a Markov Decision

Process.
a An action of an agent.
b Size of forwarded packets in bytes.
Cfj Communication and processing costs with

user j.
Cj The message transmission cost from or to

user j.
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dS A differential hyper rectangle face in the
Mean Field Theory analysis.

dV A differential hyper-rectangle volume in the
Mean Field Theory analysis.

ej A unit vector in the direction of the joint
action of the population.

ez A unit vector in the direction of aj.
Gj The gain that a user is getting from transfer-

ring its message.
ki Set of nodes on route gateway i.
Pfx Price of packet forwarding per byte at

node x.
Q Action-value function of a learning process.
R The reward function for a Markov Decision

Process.
R The reward function for a Markov Decision

Process.
S Set of all valid states in a Markov Decision

Process.
s A state of an agent.
T Transition probability between states in a

Markov Decision Process.
UGWi Utility function of gateway i.
Uuserj Utility function of User j.
V Value function of a learning process.

I. INTRODUCTION

INCENTIVIZED relaying in communication networks is
a method proposed and studied in the literature to enable

cooperative communication and forwarding in specific appli-
cation networks [1]. It has potential applications in IoT
networks, future cellular networks, smart cities, smart homes,
wearable devices, and smart grids, wheremulti-hopmesh net-
work architectures can enhance network spectral and energy
efficiencies [2].

In the future generations, radio access networks are
expected to become more open to a diverse set of wireless
technologies [3]. This openness may also extend to individ-
ual or third-party operators who can run and maintain their
services on the radio access plane. Consequently, monetiz-
ing forwarding services will be crucial for ensuring smooth
operations with third-party-owned relay devices. In such sce-
narios, credit-incentivized forwarding and relaying become a
straightforward approach for trading transmission power and
spectrum in exchange for connectivity. However, similar to
any free market, gateways (GWs) and forwarding nodes can
establish an oligopolistic market for the users they serve.

An oligopolistic market occurs when a small number of
sellers have control over market prices and the produced
commodity [4]. In our case, gateways and hops in proximity
to them exert control over the forwarding price. Individual
users must decide whether to purchase a resource at a specific
price or forgo it. However, due to the limited number of
gateways, users may have a specific optimal route in terms of
energy consumption and delay. In some cases, users may not

have viable alternative options, allowing gateways to increase
their forwarding prices to maximize their utility, and users are
left with no choice but to comply. Alternatively, users may
seek other gateways, which may not offer the optimal route
and may not justify the price difference.

In this study, we propose a coalition scheme among buy-
ers to address the issue of price control by gateways or
nodes in close proximity to the gateways. The objective
is to determine the parameters and communication mes-
sages between users that lead to beneficial coalition results.
To achieve this, we employ reinforcement learning (RL)
as the decision-making method for buyer agents (users)
and sellers (gateways) in a Stackelberg1 competition game.
Implementation-wise, we utilize Deep Q-learning, which
combines RL with deep neural networks to represent state-
value functions.

In this paper, we tackle a multi-agent reinforcement learn-
ing (MARL) problem that involves the behavior of multiple
learning agents coexisting in a shared environment. Each
agent is driven by individual rewards and acts in its own
self-interest, which often conflicts with the interests of other
agents, leading to complex group dynamics.

The agents in the system are represented as independent
learners utilizing decentralized Deep Q-Networks (DQN).
Both competing sides employ DQN reinforcement learning
to engage in the Stackelberg game. One notable challenge in
this setup is the absence of a central entity, such as a critic or
referee, which poses difficulties for system convergence. We
delve into the dynamics of the distributed MARL system, the
evolution of Q-functions, and the challenges arising from the
inherent nonstationarity of the system. Furthermore, we pro-
vide implementation recommendations for such systems.

To facilitate secure and accurate storage of information,
a distributed ledger is utilized, leveraging Distributed Ledger
Technology (DLT). DLT enables the establishment of a
decentralized digital database, reducing reliance on a cen-
tralized authority to guard against manipulation. By utilizing
encryption and cryptographic signatures, DLT ensures the
safe storage of any type of information within the distributed
network.

We outline the novelty of our contribution in this paper as
follows:
• We propose a MARL-based coalition approach to
address the problem of incentivized forwarding. Our

1The Stackelberg leadership model is a strategic game in economics that
describes a hierarchical structure within an oligopoly market. In this model,
firms are classified into two groups: leaders and followers. The leader firm,
or Stackelberg leader, acts first by setting its output or price, anticipating
the reactions of the follower firms. Once the leader has made its decision,
the follower firms respond sequentially, taking the leader’s action as given
and adjusting their own output or price accordingly. The Stackelberg model
is particularly useful for examining situations where one firm possesses a
clear advantage or dominant position in the market, allowing it to influence
the behavior of its competitors. By anticipating the followers’ responses
to their actions, the leader firm can strategically set its output or price to
maximize its profit. This game-theoretic model provides valuable insights
into the dynamics of competition in markets with asymmetric information or
power.
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system architecture assumes that the users can form
a coalition to exert control over the gateways’ prices.
We motivate the use of DLT as a technology enabler
for transactions and the exchange of value. The ledger
is used in our study as an enabler of the forwarding
method.

• Our approach employs a fully distributed MARL frame-
work, where there is no central critic or referee to
regulate the learning process. Additionally, the agents
operate without any predefined behavioral rules and rely
solely on DQNs. This distinguishes our work from most
MARL literature, which often relies on central critics or
referee agents for guidance.

• The proposed collaboration architecture is implemented
using a two-level learning scheme. The first level of
DQN facilitates communication between users through
shared suggestions. The second level of DQN han-
dles trading decisions while considering the suggestions
received from the first level. We also introduce a cus-
tomized learning schedule for this scheme.

• To gain a deeper understanding of the dynamics of
our MARL system, we conduct an extensive analysis
using Mean Field Theory [5]. Furthermore, we discuss
the reasons for divergence from a statistical differen-
tial formulation perspective. Additionally, we propose
several practices that increase the likelihood of MARL
convergence.

This paper is organized as follows. In the next section,
we briefly present the related work from the literature. The
proposed system architecture is introduced in Section III.
RL formulation is shown in Section IV, followed by our
MARL system formulation in Section V. The system dynam-
ics are discussed in Section VI. We present implementation
notes in Section VII. Finally, the simulation & results are in
Section VIII.

II. RELATED WORK
Several applications benefit from incentivized forwarding
because it can be a solution for uncooperative behavior in ad-
hoc, multi-hop, and device-to-device (D2D) communication
networks. In [6], the use of wireless power transfer is pro-
vided in exchange for sensed data to incentivize the owners
of wearables to participate in collaborative data collection. In
[7], sensing and signal forwarding activity is the commodity
being traded in a wireless sensor network. The incentives
assumed in this study are the bandwidth assigned to the col-
laborating nodes. Also in [8], in order to optimize the transmit
energy in a multi-hop network virtual cost incentives are paid
to encourage cooperation to forwardmessages throughout the
network.

A. INCENTIVIZED FORWARDING MECHANISMS
In this study, our focus is the credit-based mechanisms where
virtual credits are used to reward forwarding. In the lit-
erature, however, the forwarding methods are not limited
to credit-based and there are other studies that introduces

Reputation based methods [9], [10], [11], [12], Barter based
methods [13], [14], [15], [16], [17] and variations of them
coupled with game theoretic methods [18], [19], [20], [21]. In
Table 1, we present a brief comparison between the methods,
with credit-based methods. Credit-based methods offer clear,
tangible rewards (credits) [22], [23], making them effective
where trust-based or reciprocal systems might fail. They also
provide flexible, dynamic resource allocation, adapting to the
varying contributions of network participants. These methods
come with challenges. Implementing Credit-Based Methods
requires complex accounting and robust security to prevent
fraud and maintain fairness. Furthermore, they may demand
advanced hardware or software, which could be a limitation in
environments with limited resources. Despite these obstacles,
the direct incentivization and adaptability of Credit-Based
Methods make them an attractive option for enhancing coop-
erative behavior in wireless networks.

TABLE 1. Comparing incentivized forwarding mechanisms.

The credit-based schemes can be classified as Stackel-
berg games, auction-based games, bargaining-based games,
and coalition-based games [1]. A Stackelberg game is an
economic game with a market leader/s and followers, and
both are competing for the maximum profits. In [24], in a
two-stage Stackelberg game, the network operator pays a
population of mobile users a reward in exchange for their
collaboration in data delivery, and users decide whether to
collaborate or not. In [25], incentivized users forwarding to
one another is studied in a wireless ad-hoc video-on-demand
system using a Stackelberg game. In [26], the base station
aims at minimizing its cost while the users maximize their
utility by choosing a caching policy. In [27], a Stackelberg
game allows the source IoT devices to maximize the power
purchased from the forwarding relays and allows the relays to
improve the price of transmit power they use for forwarding.
In [28], a forwarding pricing mechanism is proposed taking
the battery levels into consideration. The payment can be in
the form of currency or credits in a multimedia application.

Auction-based games [29], [30], [31], [32] and bargain-
ing games [33], [34], [35], [36] have also been presented
as frameworks for studying the incentivized forwarding

242 VOLUME 2, 2024



Ibrahim et al.: Buyers Collusion in Incentivized Forwarding Networks

problem. But they are not closely related to the framework
in our study because their exchange of information to decide
the pricing is different from our work. In our work, we study
the coalition of users or source nodes in a Stackelberg com-
petition repeated game.

Coalition formation game-based credit scheme is also a
part of the incentivized forwarding literature. A coalition
game is a game where a set of players act as a single entity
to gain a higher payoff, called coalition value. The work in
[46] proposed a coalitional game with transferable utilities
for mobile user-provided networks. In [47], boundary and
backbone nodes form a coalition for data relaying across
the network. The coalition is implemented via a proposed
coalition routing protocol. In [48], in a coalition game, the
users try to enhance their delivery delay and relaying cost
by deciding to enter or to opt-out of a coalition. In [49],
a coalition graph game helps incentive data dissemination
with a minimum power consumption over the network. In
[50] and [51], social trust and reciprocity help form stable
coalitions between devices to share network resources. The
novelty of our paper is the application of pure multi-agent
distributed reinforcement learning in a credit-incentivized
forwarding problem, where users learn to collude without the
help of any external referees, critiques, or rules.

In Table 2, we infer a brief comparison between the
credit-based schemesmentioned above. The decision-making
process in Stackelberg games is streamlined, with lead-
ers determining strategies that followers react to, sim-
plifying the communication of strategies and responses.
This process reduces the complexity inherent in other
game-theoretic approaches, such as the iterative bidding
in auction-based games or the continuous negotiations in
bargaining-based games. In terms of implementation, while
Stackelberg games require the leader to develop decision
algorithms that take network dynamics into account, they
avoid the elaborate setup necessary for auctions, the ongo-
ing negotiations of bargaining, and over head communi-
cation for coalition formations. This can result in lower
overhead, especially as the complexity of the network
increases.

B. REINFORCEMENT LEARNING COALITION GAMES
Reinforcement learning methods have been used in coalition
games for purposes other than incentivized forwarding. In
[54], Bayesian reinforcement learning coalition formation is
used to solve the problem of distributed resource sharing in
device-to-device enabled heterogeneous networks. In [55],
micropower grids co-schedule their demands and generate
energy levels to minimize the overall costs using Bayesian
coalition reinforcement learning. While in [56], micropower
grids form a coalition to save power losses of energy export-
ing from the distant grid. In [57], base stations from different
service providers create coalitions as a hierarchical model to
solve the computational offloading of a mobile edge comput-
ing network.

C. MACHINE LEARNING AND BLOCKCHAIN
In [58] and [59], joint consideration of blockchain and ML
may bring significant benefits as it can achieve decentral-
ized, secure, intelligent, and efficient network operation and
management. Blockchain can significantly facilitate train-
ing data and ML model sharing, decentralized intelligence,
security, privacy, and trusted decision-making of ML. The
authors in [59] provide a brief survey on blockchain appli-
cations for artificial intelligence (AI), which includes ML
and other intelligent techniques. They discuss the existing
blockchain applications, platforms, and protocols targeting
AI area. Decentralized Intelligence: The decentralized nature
of blockchain provides the fundamental protocols to enable
decentralized ML applications. By applying blockchain, ML
could learn, train, and derive decision-making on various end
devices in decentralized and distributed networks. In particu-
lar, smart contracts and decentralized applications (DAPPs)
may provide new opportunities to model the interactions
between different entities in an ML application.

In [60], distributed blockchain-based scheme is used to
create virtual wireless networks (VWNs) where primary
wireless resource-owners PWROs sublease their resources
(e.g., a slice of RF spectrum) to mobile virtual network
operators MVNOs using machine-to-machine communica-
tions based on their Service Level Agreements (SLAs). In
[61], cryptocurrency is used in distributed peer-to-peer appli-
cations to incentivize users to cooperate. A pricing strat-
egy is proposed to guarantee the security of the incentive
mechanism.

In the next section, we present our system architecture.

III. SYSTEM ARCHITECTURE
The network architecture employed in this study is a mesh
network consisting of inner nodes and edge gateways, as in
Fig. 1. The inner nodes can represent various entities, such
as wireless sensors, IoT devices, or human users. The gate-
ways are nodes owned by third parties other than the formal
service providers. The gateways forward packets to adjacent
clusters or a service provider’s core network for the inner
users in the uplink and downlink directions. The gateways are
incentivized by users by collecting monetary rewards from
the adjacent hops.

In the proposed multi-hop network, each forwarding,
or group of forwarding, operations will be paid off from
the inner hop to the hop closer to the gateways. To hold
these monetary transactions, we assume a locally distributed
ledger. This ledger serves as a means of keeping track of the
debts owed by nodes to one another, and at specific intervals,
the debts can be settled through practical means. The dis-
tributed ledger is managed by a subset of the nodes with the
computational capabilities of keeping consensus and power
capabilities necessary for communication overhead related to
the ledger. In a real-world scenario, these nodes would be
incentivized by imposing a small tax on each transaction they
handle. It is important to note that the detailed analysis of
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TABLE 2. Comparison of credit-based schemes.

FIGURE 1. An example of the network of the user agents and the
gateway agents.

this aspect of the network is beyond the scope of this study,
and the existence of a functional ledger capable of storing
transactions and forwarding prices is assumed.

The network structure in this study represents an oligarchy
of gateways, where a small group holds the power to set the
forwarding price. This hierarchy results in the gateways being
able to raise prices, while the individual inner users have

FIGURE 2. Stackelberg game agents.

limited power to negotiate or bargain individually by adjust-
ing their demands. To address this issue, a control plane is
introduced to enable information exchange among the users,
which can help them form coalitions if they choose to do so.
The purpose of these coalitions is to bring the forwarding
prices to their lowest possible values.

In this context, the utility function of a gateway takes into
consideration the communication and processing costsCf for
the forwarded packets and the price Pf it can set for the users.
It is formulated as:

UGWi =

∑
j∈J

b (Pfi − Cfj), (1)
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where the subscript i refers to the ith gateway, Cfj is the
forwarding cost for b occupied resource blocks at the GW’s
resource grid, for the jth user. Pfi is the forwarding price set by
the gateway. It is assumed that the offered price is the same
for all the users. The forwarding can occur in the uplink or
downlink direction, and the same price is assumed for both
directions.

A user who chooses to get its packet forwarded by gateway
i has the following utility function:

Uuserj = b
[
Gj − (Pfi +

∑
x∈ki

Pfx)− Cj
]
− ηL(%), (2)

where Gj represents the gain that a user is getting from
transferring its message, and it is the reason the user wants
to communicate with the outer world. Hence, Gj reflects
the communication value for each user, which is something
specific to the mission of the device or its service. Pfx is the
forwarding price for a node on the route ki that leads to the
gateway i. Cj is the message transmission cost from or to
user j; for simplicity, we assume it is the same for up and
downlinks. Queuing latencymay occur when a gateway expe-
riences high demand, resulting in requests being placed in a
queue for processing. To account for the negative impact of
latency on user rewards, L(%) represents the load of the serv-
ing gateway in percentage, and η represents the load-induced
latency penalty. The parameter η captures the combined
effects of latency resulting from loads and the inconvenience
experienced by the user due to latency.

During a specific duration, the user j will be served by a
set of gateways G, as it may choose to diversify its routes.
Therefore, the utility function over this duration is:

Uuserj =
∑
i∈G

b(i)j
[
Gj − (Pfi +

∑
x∈ki

Pfx)− Cj
]
− ηL(%).

(3)

Fig. 2 shows the decision-making workflows for both
gateway and user agents within the proposed network. For
the gateway agent, the process begins with deciding on a
price for forwarding services, followed by broadcasting this
price to users and the ledger. Responses from users are then
collected, enabling the gateway to evaluate rewards and adjust
its price strategy accordingly. Meanwhile, the user agent
workflow initiates by reading prices from the ledger, which
informs their subsequent decisions on requests, managing
transactions with gateways, collecting rewards, and adjust-
ing their buying strategy. These flowcharts are central to
understanding how agents dynamically interact within the
repeated Stackelberg game framework, which encapsulates
the strategic economic interactions in our model.

The economic formulation of the interaction in our model
can be described as repeated Stackelberg games, where the
gateways act as leaders who make decisions regarding the
setting of forwarding prices. On the other hand, the users
act as followers and make decisions regarding the number of
bytes to request, which gateway to purchase from, and what

information to share with neighboring users. The gateways
play the repeated game and aim to learn the optimal forward-
ing prices, while the users learn to maximize their profits
through collaboration. The means by which the agents make
decisions are reinforcement learning methods. Further details
about the formulation of RL arementioned in the next section.

IV. REINFORCEMENT LEARNING FORMULATION
RL is a framework where agents make decisions based on
their states and the decisions of other agents. Gateways adjust
the prices based on user demand, and users, in turn, adjust
their demand based on their utility functions as mentioned
earlier.We employ amodel-free RL framework, where agents
learn the behavior of their neighboring agents and adapt their
own behavior accordingly.

The utility of each agent’s interactions with the environ-
ment corresponds to the rewards. The agents aim to increase
their rewards as much as possible. Moreover, every time an
agent makes a learning step, their value functions are altered,
which modifies their policies. The main contribution of this
study is to show that cooperative communication between the
users in a multi-agent RL system can introduce gains as the
agents learn on their own to negotiate to drop the prices of
the gateways collaboratively. In this section, we present the
formulation of a single-agent RL system.

A. SINGLE AGENT RL
Single-agent RL studies an agent’s interaction with an envi-
ronment and its learning from its actions and experiences
through trial and error. RL depends on rewards as positive or
negative feedback to a behavior. The goal is to find a suitable
state-action model that maximizes cumulative rewards. The
RL problem is well described by a Markov Decision Process
(MDP). MDP systems obey the Markov property where the
transitions of the process depend only on the current state and
actions and not the prior history. TheMDP is described by the
tuple < S,A,R,T , γ >, where the elements of the tuple are:
• S is the set of all valid states that can be discrete or
continuous.

• A is the set of all valid actions.
• R : S × A × S 7→ R is the reward function, with rt =
R(st , at , st+1), and t is the time step unit.

• T : S × A 7→ T (s′) is the transition probability to state
s′ if action a taken at state s.

• γ ∈ [0, 1] is the discount rate mapping to the future
rewards.

The trial and error process of the agent is supported by
exploration, and its purpose is to try states searching for
higher rewards. The process of using the knowledge already
collected is called exploitation. Between exploration and
exploitation the agent tries to find the balance for optimal
learning and rewards maximization.

1) ACTION-VALUE FUNCTIONS
The action-value function (Q-function) represents the
expected return of the state-action pair (s, a), under policy π .
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Actions are extracted from the value functions such that we
maximize the expected returns.

Qπ (s, a) = E
[ ∑
t≥0

γ tR(st , at , st+1) | at ∼ π (·|st ),

s0 = s, a0 = a
]
. (4)

The above equation means that the expected return is deter-
mined from all of the future state action routes decided by
the policy and discounted by the factor γ . The Q-function
is updated when transitioning from state-action (s, a) to new
state s′, and a reward r is received

Q(s, a)←− (1− α)Q(s, a)+ α[r + γ max
a′

Q(s′, a′)], (5)

where, α is the learning rate. Next state s′ is sampled from the
environment’s transition rules s′ ∼ P := s′ ∼ P(·|s, a). The
next action is sampled from the policy rules a′ ∼ π := a′ ∼
π (·|s′). The optimal action-value function Q∗(s, a) gives the
expected return if the agent starts at (s, a) and keeps acting
according to the optimal policy.

Q∗(s, a) = max
π

E
[ ∑
t≥0

γ tR(st , at , st+1) | at = a∗,

s0 = s, a0 = a
]
. (6)

The optimal policy takes action a∗ that maximizes the
expected return

a∗(s) = argmax
a
Q∗(s, a). (7)

B. MULTI-AGENT RL
The decision-making problem resulting from several agents
operating simultaneously in the same environment is
addressed by MARL. The multi-agent case can directly use
single-agent RL algorithms. The majority of the theoretical
guarantees for the single agent are invalid due to the MARL
problem of non-stationarity. MARL algorithms are classified
in the literature into three types; fully cooperative, fully
competitive, and mixed setups. Similar to single-agent RL,
MARL representations can be realized via Markov Games
(MGs), which is a generalization of MDPs. A Markov Game
is defined by the tuple < N , S, {Ai}i∈N ,T , {Ri}i∈N , γ >.
Where
• N = {1, . . . ,N } is the set of agents.
• S represents the state space of all agents combined.
• Ai is the action space of agent i, A := A1 × . . .× AN is
the action space for all agents.

• T : S × A 7→ 1(S) is the system transition probability
from state s ∈ S to state s′ ∈ S after taking the joint
action a′ ∈ A.

• Ri : S × A × S 7→ R is the reward received by agent i
for the transition from (s, a) to s′.

• Finally, γ ∈ [0, 1] is the discount factor.
The aim of each agent is to optimize its own rewards by
adopting the policy π ′ : s 7→ 1(Ai) such that ai ∼ π i(·|s).
Consequently the agent value function V i

: s 7→ R depends

on the joint policy π : s 7→ 1(A) which is defined as
π (a|s) :=

∏
i∈N π

i(ai|s). This is formulated as,

V i
π i,π−i

(s) := E
[ ∑
t≥0

γ tRi(st , at , st+1)|ait ∼ π
i(·|st ), s0 = s

]
,

(8)

where−i denotes the set of agents inN other than agent i. We
can observe that an agent’s optimal value function is shaped
not only by its own policy but also by the policies of other
agents. Therefore, the Nash equilibrium is a joint policy π∗ =
(π1,∗, . . . , πN ,∗) such that

V i
π i,∗,π−i,∗

(s) ≥ V i
π i,π−i,∗

(s) for any π i. (9)

In the literature of MARL, there are cooperative MARL
games where agents share a common reward function [62],
[63] or team average reward [64], [65], [66]. Competitive
MARL games is modeled as zero-sum Markov Games [67],
[68], [69], because the sum of the agents’ reward matrices is
a zero matrix. The mixed games category related to our work
is known as general sum games [70], [71]. Each agent is self-
interested, and rewards don’t have to be aligned for all agents,
and they can conflict between some agents.

V. PROPOSED MARL SYSTEM SETUP
A. DEEP Q-LEARNING AGENTS
Our system of networked agents is formalized as MDP-
independent learners with decentralized Deep Q-Networks.
The agents engage with one another by choosing the actions
that maximize their rewards in the future. In order to accom-
plish an easy-to-realize action-value function, the actions in
our design map to gradual changes in the state space, and the
states in our architecture are continuous.

1) USERS
The user is defined with two modes of operation. One with
no information exchange between the users, where they act
individually, trying to maximize their rewards. The second
mode is when there is information exchange between the
neighboring users.

For the unconnected-users mode, the ’Requests’ DQN is
used to map between the states as prices and the current
requests of the user. While the actions are the incremental
changes in the requests. The requests are formalized as the
total requests b, and the preferences vector < m(i)

| i ∈ G >.
The preference vector holds the ratio of requested resource
blocks (RBs) from every GW. The actions are increments in
the request δb, δm(1), . . . , δm(i).

In the connected-users mode, shown in Fig. 3, two state-
action DQNs are used. The first one is the requests DQN
mentioned above, adding to it the suggestions from neighbor-
ing users as input states. The secondDQN is the ’Suggestions’
DQN. The states for the suggestions DQN are the prices and
the agent’s current requests. The actions are the suggestion
values with a limited action space. Each request has a corre-
sponding suggestion; therefore, the suggestion related to the
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FIGURE 3. Communication Dynamics in Multi-Agent Reinforcement Learning: Sequential decision-making
processes of User j and User j+1 across two action stages. First, DQN 2 formulates strategic suggestions
that are communicated to adjacent users. Subsequently, these users incorporate the received suggestions
into DQN 1 to adjust their request actions.

number of RBs is ζ (b), and the ones related to the preferences
are < ζ (mi)| i ∈ G >. The two DQNs will act in different
time slots, as shown in the following sections.

The rationale behind adopting two modes of operation is to
evaluate the collusion gain later in the Simulations Section. It
is presumed that through the connected-users setup, agents
can autonomously learn to collude, leveraging their collec-
tive bargaining power to influence gateway pricing strategies
favorably, all without prior collusion experience. This is
in contrast to the conventional Stackelberg game approach,
where user agents are isolated and uncoordinated. Our archi-
tecture, thus, sets the stage for an innovative exploration
of emergent behaviors within multi-agent learning environ-
ments. The proposed architecture’s parameters are as follows.

DQN 1 (Requests):
• States: < Pi : i ∈ G >, b, < m(i)

: i ∈ G >, < ζ
(b)
x :

x ∈ U(−j) >, < ζ
(mn)
x : x ∈ U(−j), n ∈ G >.

• Actions: δb, < δm(i)
: i ∈ G,

∑
i∈G mi = b >.

• Rewards: Uj (Eq. (3)).
The parameters of DQN 2 (Suggestions):
• State: < Pi : i ∈ G >, b, < m(i)

: i ∈ G >.
• Actions: ζ (b)y : y ∈ U(−j), < ζ

(mn)
y : y ∈ U(−j), n ∈

G >.
• Rewards: Uj (Eq. (3)).

Note that we are using the same rewards for both of the net-
works. For the first mode of operation, DQN 1 runs without
the suggestions states. For the secondmode of operation, both
DQNs are running. Price info is assumed to be gathered from
the distributed ledger.

2) GATEWAYS
In our study, we assume the gateways are also represented
by RL processes. Gateway i uses a DQN as well to learn the

pricing strategies. It maps between the states as load, prices
set by the gateway itself and the other GWs, and actions as
the increments δPi. The parameters of DQN 1 (Pricing):
• State: Pi, < Px : x ∈ G >, Li.
• Actions: δPi.
• Rewards: Ui (Eq. (2)).

In all of the above processes, the action increments can be
positive or negative shifts from one of the state parameters.
Next, we discuss the training process.

B. DQN TRAINING PROCESS
The training process, according to the Bellman equation,
entails updating a neural network from a locally estimated
future reward. If the same network generates this reward
estimate, it causes feedback and instability in the learning
process. A target network is used for more stable training,
with a clone of the trained network used for the Q(s′, a′)
estimate to feed the Bellman equation. The main network is
trained using environment rewards, and the target network is
periodically synchronized with the main Q-network parame-
ter through soft updates.

The training data is pulled from an experienced buffer
with the stored transitions (s, a, r, s′). Each row in the buffer
represents one transition from s to s′ via taking action a
and collected rewards r . Typically a batch of experiences
(s, a, r, s′) is used to train our network. The loss function is
calculated from both the Q and the target networks as shown
in Fig. 4.

L(θ ) = [r+ γ max
a′

Q(s′, a′ : θ (traget))− Q(s, a : θ )]2,

(10)

where θ is the Q-Network bias and weight parameters.
Then the Q-function is updated by updating the Q-Network
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FIGURE 4. Training process.

parameters through stochastic gradient descent (SGD). This
is equivalent to minimizing the mean square error represented
by the loss function. The θ update equation is

θ t+1 = θ t + α
[
[r + γ max

a′
Q(s′, a′ : θ t )

− Q(s, a : θ t )] ∇ tθQ(s, a : θ
t )
]
. (11)

Finally, a soft update of the target network is performed,
where the values of the Q-Network are gradually transferred
to the target network using a soft update parameter h≪ 1.

θ (target) = (1− h) θ (target) + (h) θ (12)

C. LEARNING SCHEDULE
In an RL setup, the learning agent takes action, observes
the environment, and collects the rewards. Finally, it
stores the transitions to be used for the learning pro-
cess and the Q-function updates. The transition information
includes the actions taken, the previous states, the next states,
and the rewards.

In our proposed architecture, we have two levels of
decision-making. The first level makes decisions about the
‘‘suggestions’’ actions which are fed to the main DQNs to
make decisions about the forwarding service buying. There-
fore, as shown in Fig. 5, we split the action duration into
two parts, one for each DQN level. The main DQN (DQN1)
starts calculating its decisions after DQN2s take their actions
and send their messages to their neighboring agents. Then
the collected rewards during the observation duration are
all summed in one step at the end of the duration. Finally,
the transition is stored in a transition buffer; then, the cycle
repeats all over.

There are dependencies between the agents’ actions.
Hence, we assume that by some means, the collaborating
agents have the above-mentioned schedule synchronized and
unified among each other. There are lots of protocols in the
industry that can make this possible, such as Network Time
Protocol (NTP).

The gateways, on the other hand, can have their schedule,
especially if the stationarity is not significantly affected by
the schedule mismatch. More about stationarity is explained
in the next section.

The DQN updates are performed from batches from the
transition buffer. The training batch is chosen randomly from
the total transitions buffer. The total transitions buffer has
a maximum size beyond which it discards all the older

FIGURE 5. Learning schedule: The gateway, acting as the
Stackelberg leader, initiates an action, followed by two
subsequent action durations undertaken by user agents.

transitions. The DQN update event is not bounded by the
above schedule because it only needs the transitions buffer
information, which is valid all the time. Therefore, in the
implementation, the DQN update process can be performed
by a parallel process running at its own pace. Next, we ana-
lyze the MARL dynamics and discuss the convergence
challenges.

VI. MARL DYNAMICS
A. MEAN FIELD ANALYSIS
The work in [72], modeled the dynamics of Q-values in
multi-agent learning using the Mean Field Theory. The mean
field approximation allowed updating an agent’s Q-values as
a response to the mean policy of the population. The analysis
was made for bimatrix games which enabled the omission
of the transition between states-related terms. In the below
analysis, we use the Mean Field Theory, but we will con-
sider the state-action Q-value function of agent i in the
population N .
First, for a single agent, the expected change of the state-

action Q-value function at a time step t is as follows:

E
[
Qit+1(sk , aj)− Q

i
t (sk , aj)

]
= x it (sk , aj).α

[
E

[
r it (sk , aj)

]
+ γ E

[
max
a′∈A

Qit (s
′, a′)

]
− Qit (sk , aj)

]
, (13)

where x it (sk , aj) is the policy of the agent reflected in the
probability of taking action aj at state sk . This depends on the
exploration method used and the current Q-value function of
the agent.

For a multi-agent system, we can drop the i index and work
with the joint state value function Q(sk , aj), where the state
sk still describes the agent’s state and aj the agent’s action.
The expected rate of change of the joint state-action Q-value
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function can be rewritten as:

E
[dQt (sk , aj)

dt

]
= xt (sk , aj)

[
α E

[
rt (sk , aj)

]
+ α γ E

[
max
a′∈A

Qt (s′, a′)
]
− α Qt (sk , aj)

]
.

(14)

The state s′ is the future state after taking action aj and the list
of actions A is the actions that can follow the action aj.
The rewards collected from the population of agents for

taking action aj is themultiplication between the action vector
of all agents by the reward matrix F(k)

R . This represents the
mapping between agents’ actions and their corresponding
rewards at state sk .

rt (sk , aj) = eTj .F
(k)
R .ez , (15)

where ej is a unit vector in the direction of agent j actions,
and ez is a unit vector in the direction of the joint action of
the population.

Each element in ez has a probability that depends on the
exploration strategy of the corresponding agent and the corre-
sponding Q-values. If we assume a greedy ϵ exploration, a set
of actions that belong to a specific agent i has a Q function-
dependent distribution

p(aiz) =


(1− ϵ); Q(s′, aiz) = max

aiz
Q(s′, aiz)

ϵ

Ni
; Q(s′, aiz) < max

aiz
Q(s′, aiz),

′
(16)

where Ni is the number of actions of agent i. Taking the
probability vector of all actions of the population of agents
Pz, we can write the expected value of the received reward
as:

E[rt (sk , aj)] = eTj .F
(k)
R .Pz (17)

Now, we consider a Q-function space RL , with L dimen-
sions. L is the number of actions and states. Each agent
occupies a point Qt in the space L and time t . As in [72],
we assume a hyper-rectangle with differential volume:

dV =
∏

∀aj∈A,sk∈S

dQt (sk , aj), (18)

where A and S are the set of the combined states and actions
of the population of agents. The hyper-rectangle has 2 L faces,
and side lengths of dQt (sk , aj). Let the agent probability
of being in this hyper-rectangle at time t be p(Qt , t). At
time t, each point Qt , changes its value with the rate dQt/dt .
Therefore, we can treat the movement of this point in the
L-dimensional space as the speed vector:

v(Qt ) ≜ E[
dQ(t)i

dt
]

= xt (sk , aj)
[
αeTj .F

(k)
R .Pz

+ α γ E
[
max
a′∈Ai

Qt (s′, a′)
]
− α Qt (sk , aj)

]
(19)

As time progresses, the agents will flow in the Q space,
and consequently, a change occurs in the density function
p(Qt , t). The rate of change is governed by the process of
the agents entering and exiting the hyper-rectangle through
its faces dS(k,j). The flow density of the agents at time t , state
sk , and action aj can be represented as:

ψ(Qt(sk , aj), t) = p(Qt , t) v(Qt ) dt dS(k,j). (20)

Then the change in the agent’s density in volume dV during
dt can be found from:

p(Qt , t + dt)dV − p(Qt , t)dV

=

S∑
sk

A∑
aj

ψ[Qt (sk , aj), t]

− ψ[Qt (sk , aj)+ dQt (sk , aj), t]. (21)

By substituting Eq. (20) in Eq. (21), the density difference
can be rewritten as:
p(Qt , t + dt)− p(Qt , t)

dt

=

S∑
sk

A∑
aj

×
p(Qt , t) v(Qt )dS(k,j)−p(Qt+dQt , t) v(Qt+dQt )dS(k,j)

dV
.

(22)

Finally, the rate of change of an agent’s probability p(Qt , t)
is

∂p(Qt , t)
∂t

= −

L∑
j=1

∂

∂Qt (s, a)
[p(Qt , t).v(Qt ))]

= ∇.(p(Qt , t).v(Qt )). (23)

This stochastic differential equation is in the form of a
Fokker Plank equation which describes the probability den-
sity function time evolution of the state value function. The
speed vector v acts as the drift vector of the Fokker Plank
equation.

Although the diffusion term in the Fokker Plank equation
is absent, and we only have the drift term, there are still
some diffusion effects. This diffusion comes from the noise
added to the drift process, which disturbs the population’s
Q-function evolution toward the highest rewards. Next,
we discuss the divergence in light of the flow equation above,
Eq. (23).

B. DIVERGENCE CAUSES
1) EXPLORATION ERRORS
By inspecting the speed vector v(Q)t , we can understand that
the learning process is updating the Q-function to reflect the
collected rewards corresponding to the actions of the agent
population plus the future expected rewards from the experi-
enced horizon of the learning agent. However, the process is
affected by what can be considered exploration noise.
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Exploration, when performed by a single agent, is a good
process as it allows collecting rewards for actions that were
not recommended by the agent’s Q-function. But in a multi-
agent system, if the population of agents that we are collecting
rewards from are also not following their local Q-function’s
recommendations, the collected rewards will be interfered
with by the suboptimal explorative actions.

Hence, there should be a few agents that are exploring
suboptimal action at the same time, or this would result in
Q particles diffusion from the maximumizing rewards path.

2) NON-STATIONARY SYSTEM
Moreover, there is the problem of non-stationarity in the
learning process. For a specific agent, there are observable
states of the system and other non-observable states because
of the distributed nature of the multi-agent system. In large
populations, the non-observable states are typicallymore than
the observable states.

The rewardmatrix F(k)
R maps the actions of an agent to their

observable states, which is the horizon that the agent is aware
of. As time progresses, the learning process gets shaped by
the rewards matrix. But if the non-observable states change
the environment and the corresponding rewards matrix for the
same observable states, the Q-function will be shaped with
a nonstationary rewards matrix. This effect can range from
being considered a mild noise added to the learning process
to being a totally noisy process causing progressive diffusion
of theQ points from the maximum rewards path, as shown in
Fig. 6

Moreover, the size of the action step is related to the
system’s nonstationarity. As mentioned above, whether it
is changing the price or the number of requested RBs, the
actions are incremental changes in the agents’ state. The size
of the increment will affect the speed of state change of the
user, which, if passed a certain limit, the other agents will not
be able to follow up, and the system will be deemed nonsta-
tionary. Next section, we will discuss some notes necessary
for our proposed system implementation.

VII. DISTRIBUTED LEDGER PRACTICAL
CONSIDERATIONS
Although the algorithm below will not be simulated along
the multi-agent learning system, This section is intended to
give insight to the ledger consensus duration and delays.
Distributed ledgers revolutionize transaction processing by
eliminating the need for a central authority, thereby enhanc-
ing democracy and decentralization. At the core of these
systems is consensus, a democratic agreement process ensur-
ing all network members concur on the ledger’s state even
after new transactions or blocks are introduced.

Among the most prominent consensus algorithms are
Proof of Work (PoW) [73], Proof of Stake (PoS) [74],
Byzantine Fault Tolerance (BFT) [75], and Directed Acyclic
Graph (DAG) systems [76]. Each has its merits and demer-
its, typically balancing between efficiency, security, and

FIGURE 6. Population’s Q-function evolution toward maximum
rewards.

decentralization. PoW, the backbone of many cryptocurren-
cies, is criticized for its energy-intensive nature. PoS and its
variant DPoS offer more energy-efficient alternatives, pro-
moting greater decentralization and faster consensus, but still
face challenges in network control and security. PoA and
BFT prioritize speed and efficiency by relying on a smaller,
more trusted group of validators, trading off some degree of
decentralization for performance.

DAG-based systems like Tangle in IOTA [77] represent
a leap in scalability and transaction throughput, process-
ing multiple transactions concurrently without the need for
miners, thereby eliminating transaction fees and achiev-
ing faster confirmations. However, it’s Hashgraph’s [78]
unique approach that stands out for our purposes. Hashgraph,
while embodying the DAG’s graph-like structure, intro-
duces a novel consensus through its ‘‘Gossip about Gossip’’
algorithm. Nodes rapidly disseminate information across the
network, ensuring each node has a comprehensive history of
all transactions and interactions. This method allows for vir-
tual voting, where nodes predict others’ votes without direct
communication, leading to quick, efficient consensus.We can
summarise the Hashgraph’s advantages in comparison with
other technologies:
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FIGURE 7. Hashgraph’s Gossip-about-Gossip/ Consensus flow
chart.

• Against PoW: Hashgraph is markedly more efficient
and scalable, reducing both computational and energy
demands.

• Against PoS: Hashgraph competes favorably in
efficiency and scalability, bypassing the need for
stake-based validator selection.

• Against BFT: Hashgraph enhances traditional BFT with
its gossip protocol, improving scalability and maintain-
ing robust security.

For our mesh network in a multiagent system reinforce-
ment learning setup, the rapid consensus of Hashgraph is
crucial. It ensures that the learning duration is appropriately
aligned with the consensus time, maintaining consistency
across the network. By adopting Hashgraph, we leverage its
speed and efficiency, ensuring that the agents operate with the
latest, unanimously agreed-upon data, thereby optimizing the
learning and decision-making process. Gossip-about-gossip
and virtual voting are presented in [78] and evaluated in terms
of speed in Hedera’s white paper [79], but evaluated over
different network sizes the consensus latency is presented in
seconds and not so clear how does that relate to the shape of
the network. Therefore, we attempt to give some insight into
how virtual voting spreads in a network and how long it takes
in the following subsection.

A. GOSSIP-ABOUT-GOSSIP AND VIRTUAL VOTING
The Gossip about Gossip protocol spreads information about
an event or about the nodes that have gossiped about that
event, thus enabling a node to track all the routes leading to
the event’s origin. Virtual voting is accomplished by count-
ing the number of nodes that have reshared the event, and
if this count passes a certain limit, e.g., two-thirds of the
mesh nodes, the event is then validated. Fig. 7 represents a
simplified flow chart of the gossiping of a node in a mesh
network to its surrounding neighbors. We assume that the
gossiping step is composed of several substeps of back-and-
forth communication to check for knowledge differences, and
lastly, gossip is shared for the incrementation of knowledge.

In Fig. 8, we show an example of how an event spreads
through the network. The examples shown in the original

FIGURE 8. Hashgraph’s Gossip-about-Gossip time.

FIGURE 9. 12 Nodes Gossip-about-Gossip/ Consensus Example.

Swirlds paper [78] show several events created at several
nodes in the same round. Here, we focus on a single event,
offering how it spreads and how consensus is reached at
different instances and nodes. Then, the spread of other events
can be superimposed on the pattern we are showing without
interference.

On the right side of the figure, We use the same graph
notations the original paper is using to show the gossip and
how information spreads over time. On the left side of the
figure, we present the connectivity of the mesh network and
we use our notation of arrows, shadings and underbars ‘‘ _ ’’
to demonstrate the spread of information over time. The node
shading represents knowledge of the event, the number of
bars under the node represents the number of nodes creating
the different routes to the event, and the number of lines
composing the arrows represents the number of extra nodes
gossiped along with the event.

In step 1, the event is created at node A. In step 2, node
A gossips to node B about the event, hence node B is shaded
and has one under-bar to represent knowledge of the event
through one node. In step 3, node B gossips to node C about
the event and about the route to node A, and it does not
gossip to node A because there is no difference between their
knowledge. The number of lines drawing the gossip arrow
from B to C represents the number of nodes in the routes
leading to the event that node C did not already know about.
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FIGURE 10. 100 Nodes Gossip-about-Gossip/Consensus
Example.

The process continues in the same manner as we move
from the nodes on the left to the rightmost node. Additional
route nodes are added to every gossip until they reach node E,
and then the gossip flows back to include the route to node E.
Assuming consensus is reached when all nodes are included
in the routes list, we can observe that nodes start gradually
reaching consensus in the following order: Node E at step 5,
NodeD at step 6, Node C at step 7, Node B at step 8, andNode
A gets the acknowledgment of network consensus at step 9.
The consensus event is shown in the graph on the right as a
bold circle.

Tracking the nodes and the routes to the event origin
ensures virtual voting. We realize that consensus is reached
at different steps depending on the position of the node and
the event position in the network.

Next, we show that the network shape and its connectivity
make a difference in the number of steps it takes to reach con-
sensus. Fig. 9 shows an example of two networks of 12 nodes,
with different connectivity. The event is created at node 1,
and the colors represent the number of steps taken to reach
consensus, assuming a step involves a gossip-about-gossip
interaction.We can observe that the connection between node
1 and node 7 shortened the consensus time as it created
shorter routes for the gossip to spread. On the other hand,
the ring network has the longest routes, therefore taking an
average of 12 to 13 steps to reach consensus. We can also
observe a different number of steps depending on the nodes’
location in the network in relation to the event location.

As we increase the number of nodes, as in Fig. 10,
we observe that the consensus durations are longer on aver-
age, ranging from 20 to 35 steps, with the nodes clus-
tered close to more neighbors reaching consensus faster, and
those at the edges of the network having longer consensus
durations.

In relation to the learning duration and information horizon
in a multi-agent reinforcement learning system, we want
the learning episodes’ durations to be much longer than the
longest consensus duration of a specific network to allow for
unified knowledge at the nodes. This alignment ensures that

all agents in the network operate with a synchronized under-
standing of the environment, crucial for the effectiveness of
collective decision-making and learning processes. Longer
learning episodes provide a buffer, ensuring that agents’ deci-
sions are based on a stable and consistent view of the network
state, rather than transient or partial information. Otherwise,
we risk the agents making decisions based on outdated or
incomplete data, which could lead to suboptimal or even
counterproductive actions.

VIII. IMPLEMENTATION RECOMMENDATIONS
This section presents the details of implementing and con-
necting the learning networks of the proposed scheme. In
the first subsection, we present the flow charts of the ledger
entity and the users and GWs agents. We emphasize that
our outlined processes flowchart is for our simulations repro-
ducibility but is not exclusive in deploying our proposed
work. After that we discuss other implementation aspects
related to parallel processing, and action increment sizes.

A. SIMULATION FLOWCHARTS
1) THE LEDGER
The ledger, in an actual setup, should be a distributed pro-
cess managed by a consensus protocol that is responsible
for keeping different versions of the same information at
different agents. The ledger can run on a subset of the network
agents. In our implementation for the simulation environ-
ment, we treat the ledger as a separate agent, and we don’t
emphasize the distributed aspects of that agent because the
ledger is not the focus of our study.

The network agents can communicate with the ledger to
store their transactions and the information they want to
broadcast. The ledger is responsible for keeping the transac-
tions and the forwarding prices of the gateways. So, whenever
a gateway changes its price, it sends it to the ledger, and the
info is then updated; when the users make a decision based on
the current prices, they query the Ledger agent for the price
information.

The ledger entity, represented as a flow chart, is shown in
Fig. 11. We include it to facilitate reproducibility. This flow
chart operates as a continuous loop, responsible for maintain-
ing the global learning state, labeled as ‘‘LearningStates.’’
These states alternate between ‘‘Observe,’’ ‘‘Learning,’’
‘‘GW Act,’’ ‘‘USR Act1,’’ and ‘‘USR Act2,’’ as detailed in
Section [reference section here].

Each state persists for a predetermined duration before the
system transitions to the next state. This transition is governed
by checking whether the previously assigned target time has
been reached. Once reached, the state is updated, and the
target time is adjusted by adding the corresponding state
duration to the current time.

In a Hashgraph ledger, these time durations can be sub-
stituted with a number of ledger rounds. Rounds in a Hash-
graph ledger represent the intervals at which the consensus
algorithm synchronizes and finalizes the order of events
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FIGURE 11. A flow chart of the ledger as an entity in the
simulation environment.

or transactions. Each round signifies a consensus instance,
ensuring that all nodes in the network agree on the transaction
order and state of the ledger. This synchronization is crucial
for maintaining the integrity and consistency of the ledger,
especially in environments with rapid transaction updates or
state changes.

A parameter ‘‘episode’’ is created and incremented with
each learning cycle. This parameter assists the agent in track-
ing the end of the learning epoch and determining when
to reset. This tracking mechanism can also be aligned with
Hashgraph rounds. During each loop, the ledger receives
price update messages from the gateways and subsequently
updates its internal parameter values. In our simulation envi-
ronment, the variables used are prices, learning states, and
episodes, while the constants are the durations of each state.

2) THE GATEWAYS
The GWs flow chart is depicted in Fig. 12. The GW cycles
through learning states, which are orchestrated by the ledger.

FIGURE 12. A flow chart of the gateways’ process.

The agent resets the forwarding price values at a ‘‘reset
episode,’’ a number predetermined by consensus among all
agents or set as a simulation parameter. The agent’s behavior
in the learning states is as follows: At the ‘‘Observe’’ state,
the agent receives user requests specifying the number of
resource blocks (RBs) needed, followed by sending back
response confirmations to the users. Note that sending and
receiving messages can be implemented using HTTP mes-
saging if a REST API is integrated with each agent. A REST
API (Representational State Transfer Application Program-
ming Interface) allows for standardized HTTP calls between
clients and servers, facilitating seamless communication and
data exchange. In our implementation, we utilized message
queuing. Message queues provide a reliable way to asyn-
chronously communicate or exchange data between different
system components, ensuring that messages are processed in
the order they are received.

During the ‘‘Learning’’ state, the average load in the last
observe duration is calculated as avg. Load = avg. offered RBs

available RBs ,
and then the rewards accumulated during the observe duration
are summed up. The rewards, states, and actions from the
previous ‘‘GW Act’’ duration are then concatenated into the
experience buffer. Finally, the Q-Networks are updated from
the experience buffer using a mini-batch process.

In the ‘‘GW Act’’ state, the price increment, denoted as
δ price, is determined from the Q-Network by evaluating
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FIGURE 13. A flow chart of the users’ process.

the GW prices inputs. This increment is then added to the
previous price and communicated to the ledger.

3) THE USERS
The users flow chart is shown in Fig. 13. Same as the GW, the
user cycles through the learning states managed by the ledger.
The only difference is that the users follow different acting
steps, depicted as ‘‘USR Act1,’’ and ‘‘USR Act2.’’ Also, the

agents follow the same reset procedure of the GW agents. The
behavior in the learning states is as follows:

At the ‘‘Observe’’ state, the user generates a random RB
request with average mureq, and standard deviation sigmareq,
and sends it to a GW with probability that depends on the
parameter ‘‘threshold.’’ The requests are sent to the desig-
nated GW, then the agent waits for confirmation, which when
received, the agent pauses for the duration of the request
and calculates the rewards related to that cycle’s request.
Also, at this step can receive ledger state. At the ‘‘Learning’’
state, the rewards accumulated during the observe duration
are summed up. The rewards, states, and actions from the
previous ‘‘USR Act1’’ duration are then concatenated into
the experience buffer of the first level Q-Networks, and
corresponding states and actions of ‘‘USR Act2’’ are con-
catenated into the other experience buffer of the second level
Q-Networks. Then all the Q-Networks are updated via min-
batch processing.

For the acting durations, at ‘‘USR Act1’’, the agent eval-
uates the Q-Network of layer 1 to create the suggestions
for the neighboring users, then it is sent. At ‘‘USR Act1’’,
suggestions are received and then used in the evaluation of
layer 2 Q-Networks to get the increments δbi and δmi.

B. PARALLEL PROCESSING AND RACE HAZARDS
In our environment, the agents run as separate modules,
making use of Python’s multiprocessing library [80]. The
multiprocessing package allows the spawning of concurrent
subprocesses, which codes run in parallel. We used queues
between the processes to send the RB request messages and
to communicate with the ledger process. Queues are one of
the multiprocessing package-supported ways of exchanging
information between the subprocesses. Messages are sent
through the queues using put commands and pulled through
get commands.

Race hazard is possible in parallel implementation. This
may happen if a message between agents arrives several
cycles later than its intended cycle, due to queuing buffers
or delays, for example. Therefore, conditions and checks
should be built within the agents’ logic to discard faulty or
late messages and skip taking action when such violations
happen. We used a global number for each learning cycle as
a check; if the agent receives a message with a wrong learning
cycle stamp, then this means that we have a wrong message.

Moreover, the learning and tacking action durations of
the learning schedule should not be shorter than the capa-
bilities of the hardware running the experiment. Otherwise,
we will have a higher probability of race conditions and,
consequently, faulty learning.

C. ACTION INCREMENTS AND TRANSITIONS BUFFER
SIZES
The agents’ action increment sizes determine the speed
of state variation. This plays a role in the stationarity of
the learning process. In our setup, we design state speeds
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FIGURE 14. Killing rogue agents.

that mimic a nested learning operation. The GWs are the
slow-moving process with small action increments, and the
users are the fast-moving processes with large action incre-
ments. The users are learning from a transition buffer with
a size within which the GWs are approximately stationary,
hence it should be slowly varying. The population of users
who learn the local state of the GWs adjusts their behavior
to increase their expected rewards. At the same time, the
gateway experiences the collective actions of the population
of agents and learns the rewards corresponding to their prices.

D. EVOLUTIONARY PRACTICES (KILLING THE ROGUE
AGENTS)
In a multi-agent learning system, if we attempt to gather a
group of agents with no prior experience or training, some
agents may diverge in the early training phases. Especially
when agents are learning and acting in isolation, with no
central entity or referee that helps to formulate a shared
common knowledge.

Divergence from local behavior can be perceived as an
agent in a maze stuck in a wall for several epochs. Or an
agent that is gathering negative rewards for a long time until it
reflects on its Q-function. An agent can diverge from logical
behavior for many epochs. Although in a single-agent sce-
nario, this can be tolerated, because with enough time it may
eventually behave logically, in a multi-agent scenario this is
dangerous.

In a multi-agent learning scenario, a misbehaving agent
affects the rewards the rest of the population collects. As
this misbehavior lasts longer, other agents may diverge as
well. How we should treat a divergent agent is a question that
can be examined in future studies, especially when the other
agents are stable and not having problems. There are better
solutions than starting the whole simulation from scratch. In
our implementation, we choose to borrow the concept of an
agent’s death from evolutionary game theory [81].

We create checkpoints that save the population DQNs
every epoch, as shown in Fig. 14. Then if an agent is mis-
behaving for a long duration and it started to affect the rest of
the population. We kill the divergent agent, replace it with a
new unbiased agent, and return back to the checkpoint where
themisbehavior started to appear and continue the simulation.

IX. SIMULATION & RESULTS
This section presents a simulation of our proposed archi-
tecture involving a single tier of user agents served by two

FIGURE 15. Simulated scenarios: a) Connected users setup
b) Unconnected users setup.

FIGURE 16. GW prices and rewards in early training epochs.

GW agents. The users collaborate by sharing suggestions,
while the GWs aim to maximize their rewards by increasing
their prices. The learning Stackelberg game parameters are
provided in Table 3.

TABLE 3. Simulation parameters.

To compare the proposed colluding agents with a pop-
ulation of users who do not share information, two user
agent cases are simulated: connected and unconnected users,
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FIGURE 17. Connected users setup: The evolution of GW0 and GW1 prices, and their corresponding rewards.

FIGURE 18. Unconnected users setup: The evolution of GW0 and GW1 prices, and their corresponding rewards.

as shown in Fig. 15. The GW agents remain the same for both
setups. Each Stackelberg game corresponds to a single learn-
ing epoch, and the learning buffer can accumulate experience
from multiple epochs. The GWs’ rewards are based on the
users’ purchases of the forwarding service (Eq. (1)), while the
users’ rewards come from the forwarding utility (Eq. (3)). At
the end of each epoch, the game parameters are reset to the
same price and request values, as specified in Table 3.
For the user agents, two types of actions are considered:

the amount of RBs to buy and the preference between the
GWs m. To expedite the learning and convergence process,
the m value decision is separated from the RBs decision. This

is achieved by implementing a separate DQN for each action
type, running them in parallel for both first- and second-level
(suggestion) networks. Consequently, eight separate DQNs
are assigned per connected user agent, and four DQNs per
unconnected user agent. The neural networks used for the
user agents have four layers with 20 ReLU activation func-
tions each. The learning rates are set to low values to allow
sufficient time for the Q-functions to be adequately trained
and to mitigate the influence of exploration noise and early
suboptimal behavior during the initial training phase.

Fig. 16 showcases a captured window during the early
stages of training with connected users. At this point, the GW
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has developed a Q-function that recognizes raising the price
leads to higher rewards, but beyond a specific price, users stop
purchasing, preventing the GW from further increasing its
price. On the users’ side, they experience negative rewards at
high prices, resulting in reduced purchases and, subsequently
lower rewards for the gateways by the end of each epoch.
This user behavior trains the gateway agents and updates their
Q-functions, ultimately leading to a new peak across the price
range.

In the simulation, a virtual currency denoted as ¢ is
employed to represent values for forwarding and transmission
costs, as well as load-induced latency penalties. By substitut-
ing the simulation parameters from Table 3 into the utility
equations (1) and (3), the price ranges where users and GWs
receive positive, negative, or zero rewards can be determined.
The rewards of the GWs depend on the users’ requests and the
current price, thus mapping the users’ actions to the GWs’
rewards. The GWs have a minimum price below which their
rewards become negative, while the users’ rewards decrease
with the price increase, with a maximum price above which
users receive negative rewards. Themaximum price for users’
positive rewards is 14¢, and the lowest price for positive
GW rewards is 3¢. The populations of users compete within
this price range, aiming to maximize their rewards through
repeated gameplay.

We can observe the results of price progression for the
connected users’ setup in Fig. 17 and the unconnected users’
setup in Fig. 18. The coordination among connected users
enables efficient load balancing, maximizing their rewards
at specific price settings. Moreover, it allows the users to
decrease their requests collectively or to be biased to buy from
one GW, which compels the other GW to lower its price. This
alternating behavior continues through a lengthy bargaining
process during GW training until a price is reached where
users can no longer push the GWs further due to approach-
ing the lowest price limit. In contrast, such coordination is
absent in the unconnected users’ setup since a single-user
agent cannot negotiate individually when other users are not
collaborating.

During the early training phase, some agents may deviate
from logical actions for several epochs, which negatively
impacts the learning of other agents, especially considering
the small number of agents in our setup. In such cases,
an agent may get stuck in a state where it consistently receives
negative rewards, and a low learning rate can resolve this
issue after several epochs. It is preferable to declare the rogue
agent as ‘‘dead’’ and replace it with a new unbiased agent.
Consequently, by the time convergence is achieved, agents
have different ages, and the time scale on the figures will have
different values for each agent. Hence we choose to show the
time axis referred to the end of the simulation, starting with
0 on the right side. Also, for convergence purposes, the price
range is limited in the range [0¢, 25¢]

In the case of unconnected users, the simulations con-
verged with user agents having a higher learning rate than
the GW agents. They also required more epochs to reach

equilibrium. This is due to the lack of connectivity among
the users, and the agreement that was easily reached through
messaging in the connected users’ setup now requires mul-
tiple trials. Consequently, we reduce the epoch duration
from 1000 to 500 steps to ensure that GW time frames are
comparable to those in the connected users’ scenario.

In our economic system, connected users resemble a free
market where competition between GWs, along with user
communication, drives prices to a lower equilibrium point
compared to unconnected users. Our results align with the
economic study in [82], which indicates that communica-
tion among buyers can effectively support collusion. This is
also consistent with experiments conducted in [83] and [84]
that demonstrate how communication between participants
allows for tacit collusion and higher group profits.

Several simplifications were used in our model in order to
focus on the collusion effect without having interference from
any other asymmetries or heterogeneity in the network. It was
assumed that the offered price was the same for all users.
The diversity of network ranges, path losses, energy budgets,
request rates, and tolerance to latency would add asymme-
tries in the network, which adds an extra layer of effects
in the emergent bargaining. Therefore, these factors were
deliberately avoided. Future work can explore the effects of
communication assisted with RL on group welfare, includ-
ing more diverse parameters and inhomogeneous situations,
as well as introducing greater complexity as in [85].

Finally, it is important to note that collusion emerged as
a behavior due to communication with a limited messaging
space, specifically using up and down flags for the requests
DQN and the GW preference DQN. We did not define the
meaning of the flags or establish rules for interpreting the
messages. Instead, users learn the communication language
through the learning process. The communication patterns
that emerged between users can vary between any two pairs of
users, as no specific rules were specified for this interaction.

X. CONCLUSION AND DISCUSSION
This paper explores the impact of communication among user
agents in monetarily incentivized forwarding systems and its
ability to facilitate tacit collusion behavior. We show that in
the absence of communication, users act as separate islands,
and an oligopolistic market led by the GWs can emerge. In
such a market, the GWs can raise the prices with no pushback
from the buyers until they reach a level where users are
experiencing negative rewards, then the users stop requesting
the forwarding service. The price where the users are about
to stop buying the service is where their rewards are slightly
positive, and this is the point of equilibrium.

However, in the presence of communication, the user
agents possessed means of coordination, which they learned
through RL to use to bargain with the GWs. As a result,
we observe a significantly lower price equilibrium point com-
pared to the non-communication scenario.

To achieve these dynamics in a MARL system with no
prior experience or defined rules, we created a two-level
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learning scheme for the user agents. The first DQN level
is responsible for the communication between users in the
form of shared suggestions with limited messaging space.
The second level of DQN focuses on trading decisions, taking
into account the suggestions received from the first level.
The paper demonstrates that through multiple iterations in a
Stackelberg repeated game, the two DQN layers are able to
identify the messages and their meanings, enabling coordina-
tion. This coordination allows the agents to act collectively,
providing them with a bargaining advantage.

The learning process in the distributed system can be
affected by nonstationarity resulting from agents’ incomplete
knowledge. The paper presents a MARL dynamics analysis
using mean field theory, providing insights into the causes
of divergence in such systems. Additionally, implementation
notes are provided to ensure stable learning and eventual
convergence.
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