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Abstract—Load imbalance among small and macro cells is a
major challenge that undermines the gains of emerging ultra-
dense heterogeneous networks (HetNets). Existing load balancing
(LB) schemes have one common caveat which is operating
in reactive mode i.e., cell parameters are tweaked reactively
in accordance with the dynamics of cell loads. The inherent
reactiveness of these LB schemes hinder in achieving promising
quality of experience (QoE) gains from 5G and beyond. To
cope with this issue, in this paper we propose a novel proactive
load balancing framework "OPERA" empowered by mobility
prediction paradigm for future ultra dense networks (UDNs).
The pro-activeness of OPERA stems from its novel capability
that instead of passively waiting for congestion indicators to be
observed and then reacting to them, OPERA predicts future cell
loads and then proactively optimizes key antenna parameters
and cell individual offsets (CIOs) to preempt congestion before
it happens. OPERA also incorporates capacity and coverage
constraints and load aware association strategy for ensuring
conflict free operation of LB and coverage and capacity optimiza-
tion (CCO) self-organizing network (SON) functions. Simulation
results show that compared to real network deployments settings
and published state-of-the-art reactive schemes, OPERA can yield
significant gain in terms of fairness in load distribution and
percentage of satisfied users. Superior performance of OPERA
on several fronts compared to current schemes stems from its
following features: 1) It preempts congestion instead of reacting
to it; 2) it actuates more parameters than any current LB schemes
thereby increasing system level capacity instead of just shifting
it among cells; 3) while performing LB OPERA simultaneously
maximizes residual capacity while incorporating throughput and
coverage constraints; 4) it incorporates a load aware association
strategy for ensuring conflict free operation of LB and CCO
SON functions; 5) the ahead of time estimation of cell loads
allows ample time for heuristics search algorithms to find LB
solutions with high gain.

Index Terms—5G, Load balancing, Mobility Prediction, Proac-
tive SON, Small Cells, CIOs.

I. INTRODUCTION

The race to 5G is on with massive impromptu densification
by small cells, orchestrated by Self Organizing Networks
(SON), being perceived as a cost-effective solution to the
impending mobile capacity crunch. Although poor indoor
coverage coupled with explosive cellular data growth—that
were expected to generate the momentous demand—are still
relevant, to date, hefty small cell deployments are not there
as expected. One of the key challenge therein is the load
imbalance issue that stems from low transmission power and
height of small cells and the conventional max–received signal

strength based user association [1]. Even with a targeted de-
ployment where the small cells are placed in high-traffic zones,
most users still end up receiving the strongest downlink signal
from the tower-mounted macrocell. As a result, macrocells
remain overloaded and small cells remain underloaded as
they fail to achieve user association proportional to available
bandwidth. This load imbalance also effects the user perceived
rate which is the product of instantaneous rate and the radio
resources assigned to users. In highly loaded macrocells, few
resources are assigned to users and hence user perceived Qual-
ity of Experience (QoE) drastically degrades. Consequently,
load imbalance has been a time persistent challenge that has
thwarted the wide scale deployment and benefits of small cells.

A. Relevant Work

Load imbalance can be mitigated by shifting the traffic
from high loaded cells to less loaded neighbors as far as
interference and coverage situation allows. To exploit this
approach, recently load balancing (LB) has gained attention as
a prominent SON function by 3GPP [2] and has been focus
of research for many works like in [3]–[12]. However, the
existing LB approaches proposed in [3]–[12] have following
four common limitations that hinders them achieving 5G
ambitious QoE requirements:

1. Reactive Design: The state-of-the-art LB SON algo-
rithms are designed to optimize the hard or soft network
parameters such as tilts (hard parameter), transmission powers
(hard parameter), cell individual offsets (example of soft
parameter) based on current network conditions. Such so-
lutions (e.g. [9]) offer improvement over fixed parameters
settings in real networks that achieves LB at the cost of
QoE. However, in the fast dynamical cellular environment,
where the scheduling is done in order of milliseconds, by
the time the realistic non-convex NP-hard LB algorithms
come up with optimum network configuration, the scenario
might have already changed, and optimized parameter values
become outdated thus undermining gain achieved from LB.
This problem is bound to escalate further in 5G as delay
intrinsic to a reactive LB solution means the stringent latency
and QoE requirements cannot be met. Furthermore, in 5G and
beyond the support for new mobility centric services such as
intelligent transport systems and self-deriving cars, and smaller
cell sizes mean even faster dynamics.
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Fig. 1. Sobol method-based first-order sensitivity index values for tilts,
CIOs, macro BS transmission power, small BS transmission power, azimuth,
horizontal and vertical beam widths

2. Limited set of optimization parameters: Existing
LB solutions use one or more of the only following three
parameters as actuators for achieving LB: antenna tilts [9],
[12], downlink transmission power [4], [12] and cell individual
offsets (CIOs) [3], [4], [6]–[8], [12]. However with the evo-
lution of smart antennas technology, new set of optimization
parameters have emerged that are yet to be exploited. These
includes beam widths (radiation pattern) that can be adapted on
the fly by optimizing the phases of complex weight vectors—
thanks to multi-array antennas technology. Similarly azimuth
orientation of the antennas can be changed remotely and
frequently to effectively change cell footprint, in addition to
or in conjunction with the antenna tilts. In Fig. 1 we have
quantified the ability of possible parameters to affect network
performance (QoE) using Sobol based variance sensitivity
analysis method [13]. It is observed that the CIOs, horizontal
beam width and azimuth have the largest impact on the
network performance. This observation calls for a shift from
the legacy paradigm of mostly optimizing tilts and/or Tx power
to maximize system performance and keeping other control
knobs untouched.

3. SON conflict prone design: Another issue with current
LB SON solutions is the intrinsic conflicts or unexpected
performance that results from concurrent operation of mul-
tiple SON use cases. Stand-alone LB solutions are bound to
negatively conflict with Coverage and Capacity Optimization
(CCO) SON function due to the overlap among their opti-
mization parameters. For example, when CCO may try to
improve coverage of cell by increasing its Tx power, this can
force large number of users to associate to that cell thereby
conflicting with LB SON objective. The interplay between
CCO and LB becomes complicated considering that both CCO
and LB resort to optimization of same parameters i.e., tilts, Tx
power and CIO. For detailed analysis of this conflict, reader
is referred to [14]. CIO, which unlike antenna parameters and
Tx power is a soft parameter, has been recently introduced
by 3GPP for LB and traffic steering in HetNets. However,
adjustment of CIO by the LB algorithm may also cause conflict
with CCO objectives as a user offloaded due to increased
CIO may face higher interference (assuming intra-frequency
offloading), and lower received power from the destination
cell, compared to the origin cell. This may result into lower
SINR and ultimately lower throughputs thereby conflicting

CCO objective. Such conflict prone LB design can often end
up increasing the complexity of network operation for RAN
engineers and compromising the QoE instead of improving it
[14].

4. Impractical assumptions: There exist line of works
such as [10], [11] that are more theoretical in nature aimed
for LB or more precisely optimal cell association in HetNets
while considering CCO in form of constraints and vice versa.
While these works provide valuable theoretical insights often
into the asymptotic behavior of the system, for tractability
the analytical models used in these theoretical studies often
build on overly-simplified and unrealistic assumptions such as
uniformly distributed user equipments (UEs), spatially inde-
pendent distribution of base stations, omnidirectional single-
antenna transmission and reception, fixed transmit powers,
same CIO for all cells in one tier, full load scenarios etc.
These assumptions help to make the analysis tractable and
make optimization problem convex, but render the end result
less useful for practical implementation. Contrary to dense
HetNet as the main motivation for LB SON function, some
works on LB exist like [8], [9] wherein the solution is proposed
and simulated mainly for macrocell scenarios, i.e., large cell
individual offsets and Tx power disparities between small cells
and macro cells are not considered. These approaches may
work for current macro cell dominated network deployment
but may not be applicable to dense HetNet envisioned for 5G.

In light of the aforementioned limitations, we propose
OPERA framework (Fig. 2) that leverages a novel approach
of transforming user mobility from being challenge to an
advantage. OPERA exploits the knowledge gained from
mobility/hand-off patterns to proactively and preemptively
prevent load imbalance in emerging dense HetNets. It mines
user mobility behavior from easily available logs such as
hand over (HO) traces to anticipate future load conditions.
This knowledge is then leveraged by a novel LB optimization
problem to prevent load imbalance in a proactive way. The
paper has following contributions:

1) In the proposed novel OPERA framework, spatio-
temporal mobility prediction based on semi-Markov
model complemented with vector theory based geomarker
concept is leveraged to predict future loads of the cells.
Transparency of the mobility model to cell types is an
added advantage to make the model’s accuracy robust
and stable in presence of cell type diversity in HetNets.

2) Based on predicted utilization of cells, proactive opti-
mization is performed to maximize the logarithmic sum
of free resources in all the cells. The proposed proactive
LB scheme leverages a judicious combination of hard
parameters i.e., (tilts, azimuths, beam widths, Tx power)
and soft parameters i.e., CIOs as optimization variables.
Furthermore, a novel load aware association strategy
for balancing load among cells is also proposed and
used. This formulation is solved by the novel hybrid
combination of genetic algorithms and patterns search
and the proactivity of OPERA enables them to converge
to high yielding LB solutions without affecting latency
requirements in 5G and beyond.

3) Rigorous simulations are performed to benchmark perfor-
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Fig. 2. OPERA framework

mance of the proposed solution against several schemes
including a real LTE network deployment and a reac-
tive scheme from published study. OPERA significantly
reduces number of un-satisfied users in the network
and also achieves maximum residual capacity. Residual
capacity i.e., resources available in cell to be allocated to
a user, is metric that can be used to quantify the ability of
emerging HetNets to cope with acute fluctuation in cell
loads owing to mobility and decreased cell size. Load-
aware association strategy provides robustness to OPERA
against load estimation inaccuracies that is further verified
by comparing it to near-optimal performance bound when
future cell loads prediction accuracy is 100%.

II. OPERA FRAMEWORK

This section describes the mobility prediction model con-
sidered and the load minimization optimization problem lever-
aged by the OPERA framework to minimize all network cells
loads.

Network Assumptions: In this work, we only focus on the
downlink of cellular systems. Macro cells are assumed to be
equipped with smart directional antennas while UEs and small
cells have omnidirectional antennas. Same spectrum is shared
between the macro and small cells (co-channel interference).
Each UE is assumed to be active all the time running a
constant bit rate (CBR) service. OPERA builds on a cen-
tralized SON (C-SON) architecture to perform network wide
optimization. The C-SON style implementation has access to
all user reported measurements like time stamped HO reports,
minimization of drive tests (MDT) measurments, call data
records (CDRs) etc.

A. Cell-level Prediction

Some phenomenal large scale studies like [15] have proven
as high as 93% average predictability embedded in regular
daily routines of humans. This in turn, provides a rational
for predicting a person’s movement given past trajectories.
Backed by this fact, the basic building block of OPERA
framework is a mobility prediction model that when given
person’s mobility history in terms of tuple of locations (cells)
visited with corresponding pause times (cell sojourn times), it
predict this person’s next location, as well as his/her sojourn

time. The mobility prediction model should meet two criteria:
1) It can be obtained with low complexity low latency online
practically implementable algorithms; 2) It can predict future
cell as well as HO time. In this paper, we leverage semi-
Markov stochastic process for modeling and predicting human
mobility because of 1) proven potential and suitability of
Markov theory to model similar prediction problems [16]–
[18], 2) their ability of modeling any arbitrary distributed
sojourn time instead of being locked to impractical assumption
of memroy-less exponentially distributed mobility that has
been shown to be not true in general [19]. Some works do
exist that have quantified the prediction accuracy of semi-
Markov based predictor for mobility prediction [20]–[22].
However, like majority of recent studies on mobility prediction
in cellular networks [23]–[27], the aim of studies in [20]–
[22] is also limited to investigating the prediction accuracy
of the leveraged mobility prediction scheme only. None of
these studies further refine and exploit this information for
optimization of the cellular network such as load balancing,
as proposed in this paper.

We model user mobility as a semi-Markov renewal process
{(Cn, Jn) : n ≥ 0} where Cn is the state (cell) at nth

transition, Jn is the time of nth transition and a total of z cells
with discrete state space C = {Cell1, Cell2, Cell3 . . . , Cellz}.
Each state in the semi-Markov process represents a cell,
wherein HO from a cell to another is modelled as a state
transition. Random variable J

(u)
n represent time instant of the

transition C
(u)
n to C

(u)
n+1 while random variable J

(u)
n+1 − J

(u)
n

describes the cell sojourn time, or state holding time. The
distribution of these random variables is not restricted to
memoryless exponential distributions. It is assumed that the
transition probabilities do not change when the model is being
built. The associated time-homogeneous semi-Markov kernel
for user u that is probability of u for transiting to jth cell after
staying in ith cell for no more than t time is defined as:

Q
(u)
i,j (t)= Pr(C(u)

n+1 = j, J
(u)
n+1 − J (u)

n ≤ t |

C
(u)
0 , ..., C(u)

n ; J (u)
0 , ..., J (u)

n ) (1)

= Pr(C(u)
n+1 = j, J

(u)
n+1 − J (u)

n ≤ t|C(u)
n = i) (2)

Assuming that the cell sojourn time random variables are
independent from the embedded state transition process (Ci,j),
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we get

Q
(u)
i,j (t)= Pr(C(u)

n+1 = j|C(u)
n = i).

P r(J (u)
n+1 − J (u)

n ≤ t|C(u)
n+1 = j, C(u)

n = i) (3)

= h
(u)
i,j F

(u)
i,j (t) (4)

where

h
(u)
i,j = lim

t→∞
Q

(u)
i,j (t) (5)

= Pr(C(u)
n+1 = j|C(u)

n = i) (6)

and

F
(u)
i,j (t) = Pr(J (u)

n+1 − J (u)
n ≤ t|C(u)

n+1 = j, C(u)
n = i) (7)

Here h
(u)
i,j ∈ H(u) is the probability of HO of user u from cell

i to j while H(u) is the probability transition matrix of the
embedded discrete time Markov chain of user u. F

(u)
i,j (t) is

the sojourn time distribution of user u that is the probability
that u will move from cell i to cell j at, or before time t. The
probability of user u staying in cell i for no more than t time
can be expressed as:

Λ
(u)
i (t)= Pr(J (u)

n+1 − J (u)
n ≤ t|C(u)

n = i) (8)

=
z∑

j=1

Q
(u)
i,j (t) (9)

This also indicates the distribution of the sojourn time in cell i

for user u, regardless of the next cell. Let C(u) = (C(u)
t , t ∈

R+
0 ) be another time-homogeneous semi-Markov process that

describes the cell occupied by user u at time t. The transition
probabilities for this process can be written as:

χ
(u)
i,j (t) = Pr(C(u)

t = j|C(u)
0 = i) (10)

It gives the probability that a user u is in the cell j after the
time instant t from the moment a transition to cell i has just
been made. First for a special case that the user stays in cell
i until the end of the period t is:

Pr(C(u)
t = i|C(u)

0 = i, J1 ≥ t) (11)

= Pr(J1 − J0 ≥ t|C(u)
0 = i) = 1 − Λ

(u)
i (t) (12)

For all other cases in which user u goes from from cell i to
j through some intermediate cell r 6= i is given as:

Pr(C(u)
t = j|Cu

0 = i and at least one transition ) (13)

=
z∑

r=1

∫ t

0

dQ
(u)
i,r (τ)

dτ
χ

(u)
r,j (t − τ)dτ (14)

This is the Volterra equation of second kind and the integral is
the convolution of Q

(u)
i,r (.) and χ

(u)
r,j (.) i.e., Q

(u)
i,r ∗ χ

(u)
r,j . Here

Q
(u)
i,r (τ ) represents the probability of the user of staying in cell

i for τ length of time and then transiting to cell r. Invoking the
argument for the renewal of process here, expected behavior
of user from here on is same irrespective of HO time to cell
r. Therefore, χ

(u)
r,j (t−τ) gives the probability of user being in

cell j at time t given that user is in cell r at τ . Integration over
τ takes care of all possible transition times [28]. Therefore,

χ
(u)
i,j (t) = (1 − Λ

(u)
i (t))δi,j +

z∑

r=1

∫ t

0

dQ
(u)
i,r (τ)

dτ
χ

(u)
r,j (t − τ)dτ

(15)
where δi,j is the Kronecker function that is only equal to 1
when i = j. We can solve equation (15) with approach given
in [29]. To this end, the discrete-time version of evolution
equation in (15) becomes:

χ
(u)
i,j (s) = D

(u)
i,j (s) +

z∑

r=1

s∑

τ=1

σ
(u)
i,r (τ)χ(u)

r,j (s − τ) (16)

where D
(u)
i,j (s) = (1 − Λ

(u)
i (t))δi,j and σ

(u)
i,r (s) =

dQ
(u)
i,r

(τ)

dτ
which is the probability to have a HO from cell i to r in the
time s can be approximated as follows assuming unit time
step:

σ
(u)
i,r (s) =

{
Q

(u)
i,r (1) , s = 1

Q
(u)
i,r (s) − Q

(u)
i,r (s − 1) , s > 1

(17)

Due to H(u) being a right stochastic matrix, Q(u)(s)
and χ(u)(s) will also be right stochastic matrices; i.e.,∑z

j=1 Q
(u)
i,j (s) =

∑z
j=1 χ

(u)
i,j (s) = 1, ∀i, j ∈ C. The χ

(u)
i,j (s)

gives the probability that a user u is in the cell j in the time
slot s counted from the moment a HO to cell i has just been
made. In order to predict the location of a user in every s′ time
slots, we need to find the probability χ̂

(u)
i,j (s′, o) = P (C(u)

o+s′ =

j|C(u)
0 = i, tsoj = o) i.e., probability that a user is in cell j

after s′ time slot given that the current cell is i and user has
stayed in cell i for sojourn time tsoj = o. χ̂

(u)
i,j (s′, o) becomes

[20]:

=
P (C(u)

o+s′ = j, tsoj = o, C
(u)
0 = i)

P (C(u)
0 = i, tsoj = o)

(18)

=
P (C(u)

o+s′ = j, tsoj = o|C(u)
0 = i)P (C(u)

0 = i)

P (C(u)
0 = i, tsoj = o)

(19)

=
P (C(u)

o+s′ = j, tsoj = o|C(u)
0 = i)P (C(u)

0 = i)

P (tsoj = o|C(u)
0 = i)P (C(u)

0 = i)
(20)

=
P (C(u)

o+s′ = j, tsoj = o|C(u)
0 = i)

P (tsoj = o|C(u)
0 = i)

(21)

=
D

(u)
i,j (o + s′) +

∑z
r=1

∑o+s′

τ=o+1 σ
(u)
i,r (τ)χ(u)

r,j (o + s′ − τ)

1 − Λ
(u)
i (o)

(22)
Note that just after HO i.e., o = 0, χ̂

(u)
i,j (s′, o) = χ

(u)
i,j (s).

By mining the HO logs that contain information of the past
handover information of user u, probability transition matrix
H(u) and sojourn time distribution matrix F(u) are initialized
as done in [22]. After each HO from cell i to j, h

(u)
i,j and

F
(u)
i,j (s) are updated and Q

(u)
i,j (s) is computed. Finally χ

(u)
i,j (s)

and χ̂
(u)
i,j (s′, o) are solved. In scope of this work, we choose

future cell that has highest probability i.e.,max
j∈Ni

χ̂
(u)
i,j (s′, o)

where Ni is set of all cells whose coverage footprints overlap
with cell i.
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B. Coordinates-level Location Estimation

Let l
(u)
s = (x(u)

s , y
(u)
s ) be the UE’s current location coor-

dinates in time slot s and {C(u)
N , T (u)

HO} be the next cell HO
tuple information for each UE wherein C(u)

N is next probable
cell of user u at time T (u)

HO . Leveraging future location esti-
mation algorithm proposed by us in [30], future geographical
coordinates at time step s + s′ are estimated as:

l
(u)
s+s′ = l(u)

s +

√
(xg

C(u)
N

− x
(u)
s )2 + (yg

C(u)
N

− y
(u)
s )2

T
(u)
HO

∗ s′ ∗ û

(23)
where xg

C(u)
N

and yg

C(u)
N

are the coordinates of most probable

geomarker for UE u in next cell C(u)
N (we utilize past mobility

logs of UEs to estimate most probable geomarkers visited by
each UE in each cell) and û is a unit vector pointing towards
(xg

C(u)
N

, yg

C(u)
N

).

C. Proactive Load Minimization Optimization

Leveraging predicted information ({C(u)
N , T (u)

HO}, l
(u)
s+s′ ) for

all users, we formulate a load optimization problem for next
time slot s + s′ in such a way that network load is minimized
while meeting operator desired coverage ratio, QoE require-
ment of each UE and cell loads for next time window. The
added advantage of targeting load minimization is that many
QoS-related KPIs are monotonic functions of the average
cell loads e.g., average throughput, latency and number of
successful sessions etc. Due to monotonicity, minimizing cell
loads improves network wide user throughputs and similar
measures, and thus, LB minimization focused objective func-
tion can capture the goals of CCO objective too. Moreover,
load minimization or load balancing increases the probability
of the availability of free resources in all the cells that becomes
advantageous for HetNets. To explain this point, consider a
two cell scenario, for instance, wherein Cell X is bearing
a load of 50% while cell Y is already at maximum load
of 90%. If a mobile user enters Cell Y coverage area and
requests service, the user will be denied and will have to be
handed over to the cell X as the cell Y is already close to
its maximum load utilization. This will result in lower QoE
for the user compared to scenario where cell Y would have
the free resources (residual capacity) to serve the oncoming
user. A load minimization approach with minimum throughput
guaranteed, solves this problem as it tries to minimize the load
of the two cells in the first place without compromising QoE
of existing users. Now as result of load balancing, if load
utilization of both cells is at 70% and a new user enters any
of the two cells, the cell will be able to accommodate this new
user without additional delay.

The cell load ηc of a cell c can be defined based on the
utilization of Physical Resource Blocks (PRBs) in the cell.
The number of available PRBs at each base station (BS) is
proportional to the available bandwidth and scheduling interval
at that BS. The total load of cell c is the fraction of the total
resources (PRBs) in the cell needed to provide required rate

for all users of a cell and can be given as:

ηc =
1

N c
b

∑

Uc

τ̂u

ωBf(γc
u)

(24)

where Uc is the number of users with active sessions connected
to a cell c, τ̂u is the required/desired rate for user u ∈ Uc,
ωB is bandwidth of a PRB, γc

u is the achievable SINR by
the user u when conencted to cell c and N c

b is the total
number of PRBs in a cell. The function f(γc

u) maps SINR
to spectral efficiency of the user link and can be defined
as f(γc

u) = A log2(1 + B(γc
u)). Here A and B constants

can reflect post processing diversity gains through e.g., by
MIMO and/or losses incurred in system. For sake of simplicity,
without any loss in generality, we assume A and B as 1 in
our simulations. The load in (24) by virtue of its definition is
a virtual load since it can exceed one and thus can quantify
how overloaded a cell is.

The SINR γc
u of user link to its cell c at its estimated

location l
(u)
s+s′ in time slot s + s′ is defined as (25) on next

page where P c
t is cell’s transmission power; Gu is the gain

of UE; λv is the weight assigned to the vertical beam pattern
of the transmitter antenna; θc

u is the vertical angle of the user
u in cell c with respect to horizon; θc

tilt is the tilt angle of
the serving cell’s antenna (at θc

tilt = 00, BS antenna faces
the horizon); ϕv is the vertical beam width of the transmitter
antenna of cell c; λh is the weighting factor for the horizontal
beam pattern; φc

u is the horizontal angle of user u in cell c with
respect to absolute north; φc

a is the azimuth of the antenna of
cell c (φc

a = 00 corresponds to the absolute north); ϕh is the
horizontal beam width of the transmitter antenna of cell c; δc

u

denotes the shadowing observed at the location of user u from
cell c; α is the path loss constant; dc

u represents the distance
of the estimated user location of u i.e., l

(u)
s+s′ from cell c; β

is the path loss exponent; and κ is the noise variable. The
time subscript on the right hand side of (25) denotes that all
terms enclosed within square brackets [.]s+s′ are considered
for the next time slot s + s

′
. In current work, we assume

that C-SON server running in the core network is able to
estimate shadowing at all locations with normally distributed
error by leveraging channel maps. These maps are built based
on MDT reports, a 3GPP standardized feature, wherein all UEs
report their geo-tagged time stamped channel measurements
back to the network. In (25), the cell load utilization ηi in the
denominator can be thought of as probability of transmission
of BS i while the sum reflects the average interference power.
In contrast to an exact time dependent SINR formulation that
results into range of SINR values that vary depending upon the
scheduling instants and load of other cells, with this approach
of mean interference, we can easily evaluate SINR with low
complexity and tractability. On average, more interference will
come from cells that are more loaded. The UEs in idle or
connected mode will be associated with the cell that ranks
highest according to following user association criterion:

Uj := {∀u ∈ U |j = arg max
∀c∈C

(P c
r,udBm

+ P c
CIOdB)} (26)

where P c
r,udBm

is the actual reference signal receivce power in
dBm that user u is getting from cell c and P c

CIOdB is the small
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γc
u(s + s′) =







P c
t Gu10

−1.2

(
λv

(
θc

u−θc
tilt

ϕv

)2

+λh

(
φc

u−φc
a

ϕh

)2)

δc
uα (dc

u)−β

κ +
∑

∀i∈C/c ηiP i
t Gu10

−1.2

(
λv

(
θi

u−θi
tilt

ϕv

)2

+λh

(
φi

u−φi
a

ϕv

)2)

δi
uα (di

u)−β







s+s′

(25)

Fig. 3. CIO bias

Fig. 4. Average UE SINR (dB) vs. CIOs

cell attraction bias parameter (CIO). The term CIO accounts
for various biases used in idle and active mode procedures [9].
The CIO is attraction factor that is broadcasted by small cells
to bias their ranking and attract users to camp on them. This
way power disparity in macro and small cell transmissions
powers is avoided and more load can be transferred to them
(Fig. 3). CIO, as a stand-alone solution, addresses the selection
between different network layers in HetNets; however, it
has catastrophic affect on user SINR since through artificial
biasing, UE is no longer connected the strongest cell. As a
consequence, SINR deteriorates with higher values of CIO as
illustrated in Fig. 4. Nevertheless, CIO is still relevant network
parameter for load balancing albeit at cost of CCO if used in
legacy way for LB [3], [4], [6]–[8]. The negative influence
of degraded SINR on user throughput can be partially offset
if small cell can allocate enough surplus PRBs compared to
macro cell and thus satisfy required QoE. Hence CIO is a
vital control parameter to balance the tradeoff between LB and
CCO. Moreover, we also leverage user association criterion
proposed by us in [12] that also takes the cell load into
consideration defined as:
Uj :=

{

∀u ∈ U | j = arg max
∀c∈C

((
1
ηc

)a

∗
(

P c
r,udBm

+ P c
CIOdB

)(1−a)
)}

(27)
where ηc is the cell load and a ∈ [0,1] is the weighting factor
in order to associate a level of priority to load and RSRP
metrics. Large value of a forces users to avoid highly loaded
BSs even if they provide good RSRP. Note that setting a = 0
will make it equivalent to (26). With cell association method
defined by (27), user is associated with such a cell with whom
the product of the received power (P c

r,udBm
+ P c

CIOdB
) and

reciprocal of cell load is maximum. Note for cell association
criterion, ηc cannot be 0 therefore for unloaded cells, ηc can
be set as a very small number ε → 0.

Note that in our case where all UEs are assumed to be
active demanding constant bit rate service, user satisfaction
ratio is more relevant performance metric then conventional
throughput. The reason being that for load optimization with
guaranteed QoS requirements, UEs either get exactly the
desired constant bit rate or remain unsatisfied. The number
of unsatisfied users (dropped/blocked) "Nus" is given as [31]:

Nus(s + s′) =

[
∑

c

max(0,
∑

Uc

1.(1 −
1
ηc

))

]

s+s′

(28)

The ηc in (28) by definition from (24) has range ηc ∈ [0,∞)
to quantify overloading in a cell. When cell is fully loaded i.e.,
ηc = 1, the inner sum in (28) will be zero which means all
users in cell c are satisfied. If cell load exceeds 1 e.g., ηc = 2,
inner sum will evaluate to half of the number of users of cell
c. This means the cell in reality is fully loaded. Half of the
users are satisfied while other half of oncoming users will be
blocked.

Based on the works of [32], we use optimization objective
function that is parameterized function of the BS loads. The
objective function considered is:

Φ(η) =






∑
i∈C

(1−ηi)
1−ξ

ξ−1 , for ξ 6= 1
∑

i∈C − log(1 − ηi), for ξ = 1
(29)

where ξ ≥ 0 is a parameter that induces the desired degree
of load balancing. For ξ = 0, (29) reduces to maximizing
the arithmetic mean of the BS’ free resources. When ξ = 1,
(29) is equivalent to maximizing the geometric mean of the
resources available in the network. When ξ = 2, the harmonic
mean of the BSs’ free resources is maximized. Increasing ξ
further to ∞ minimizes the maximum utilization, i.e., min-
max utilization which yields solutions with balanced loads.
The value of ξ in general depends on network operators’
preferences and policies. It should be noted that load balancing
does not necessarily aim at equalizing the loads of all BSs
since different values of ξ have different implications. In this
work, we chose ξ = 1 since it prevents overload situation
(logarithmic term tend to infinity for overloaded scenarios)
and minimizes the total system load with notion of fairness
rather than distributing load equally among cells.

The load minimization optimization problem formulated for
next time slot s + s′ is (30-33) that is shown on top of next
page. Since ηc denotes the resource utilization of cell c, term
(1− ηc), hence forth noted as residual capacity, is fraction of
resources in cell c ready to be allocated to users. The objective
is to optimize the parameters P c

t , θc
tilt, φc

a, ϕc
v , ϕc

h, P c
CIO such

that logarithmic sum of idle resources in all cells is maximized
while ensuring coverage reliability and QoE requirements.
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min
P c

t ,θc
tilt

,φc
a,ϕc

v,ϕc
h
,P c

CIO

∑

c

[− log(1 − ηc(P
c
t , θc

tilt, φ
c
a, ϕc

v, ϕc
h, P c

CIO))]s+s′ (30)

min
P c

t ,θc
tilt

,φc
a,ϕc

v,ϕc
h
,P c

CIO

∑
c − log















1 − 1
Nc

b

∑
uc

τ̂u

ωB log2(1+
P c

t
Gu10

−1.2

(
λv

(
θc

u−θc
tilt

ϕv

)2

+λh

(
φc

u−φc
a

ϕh

)2)

δc
uα(dc

u)−β

κ+
∑

∀i∈C/c
ηiP i

t
Gu10

−1.2

(
λv

(
θi

u−θi
tilt

ϕv

)2

+λh

(
φi

u−φi
a

ϕh

)2)

δi
uα(di

u)−β

)















s+s′

(31)

where

Uj :=

{

∀u ∈ U | j = arg max
∀c∈C

((
1
ηc

)a

∗
(

P c
r,udBm

+ P c
CIOdB

)(1−a)
)}

(32)

Pt,min ≤ P c
t ≤ Pt,max∀c ∈ C (33a)

θmin ≤ θc
tilt ≤ θmax∀c ∈ C (33b)

φmin ≤ φa
t ≤ φmax∀c ∈ C (33c)

ϕv,min ≤ ϕc
v ≤ ϕv,max∀c ∈ C (33d)

ϕh,min ≤ ϕc
h ≤ ϕh,max∀c ∈ C (33e)

PCIO,min ≤ P c
CIO ≤ PCIO,max∀c ∈ C (33f)

1
|C|

∑

C

1
|Uc|

∑

Uc

1(P c
r,u ≥ P c

th) ≥ ω̄ (33g)

τu ≥ τ̂u∀u ∈ U (33h)

ηc < 1∀c ∈ C (33i)

The log utility function leads to a kind of proportional fair
treatment of the individual cells while minimizing cell loads
or maximizing residual capacity. The first six constraints (33a-
33f) define the limits for the variation in the Tx power,
tilts, azimuths, beam widths (vertical, horizontal) and CIOs
respectively. These constraints determine the size of solution
search space. The seventh constraint (33g) ensures that with
new parameters settings, network meets at least minimum
network coverage threshold ω̄, a QoS KPI set by the operator.
Pc

th is the minimum acceptable threshold level for received
power for user below which no session can successfully be
established. The eighth constraint (33h) ensures each covered
user is satisfied meaning it receives minimum guaranteed
throughput that is required depending upon the subscription
level or session types. This constraint is needed because for
achieving LB objective, if CIO is leveraged to tune actual
RSRP based cell association for the user, the received power
P c

r,u for offloaded user may become worse, and consequently
the SINR and throughput for that user will be impacted.
The loss in SINR can be neutralized by allocating surplus
resources given that the CIO biased user received power is
above a certain threshold. Consequently, minimum throughput
is assured for the users in network by this constraint (implicit
CCO objective). This is possible only when cell has sufficient
resources to meet total capacity requested, therefore, constraint
in (33i) is needed to ensures that load for every cell has to be
less then 1 ηc < 1.

The objective function, optimization variables and con-

straints indicate it is a large-scale non-convex NP-hard prob-
lem due to the inherent coupling of optimization parameters
and the cell loads. Non convexity stems mainly from the fact
that we are dealing with not one or two but five parameters
per macrocell i.e., cell transmit power, antenna tilt, azimuth,
horizontal beamwidth and vertical beamwidth and two in-
dependent paramters per small cell i.e., transmit power and
CIO with inter-coupled effects on the objective function. In
total, the solution space for the network system will have
147 = 21 × 5 + 21 × 2 distinct and independent optimization
parameters. This means that even if each parameter can take
only 2 values, we will end up with 2147 distinct combinations
in the solution space that becomes computationally prohibitive.
The plot of the objective function for a sample topology of
42 cells is shown in Fig. 5 wherein tilt and horizontal beam
width of a base station are varied while rest of all variables
are kept constant. It can be observed that solution space is
combination of multiple hills and valleys (non-convex). As
the number of possible combinations for the optimization
parameters considered increases exponentially with network
density, a brute-force style strategy for search of the optimal
parameters to achieve the load minimization may become im-
practical for large size network. In a practical network of 100
cells with only 10 tilt values per cell available as optimization
variables, number of combinations 10100 become greater than
total number of atoms in universe. Clearly this search space
size is unfathomable, mostly filled with suboptimal points and
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Fig. 5. Non-convexity behavior of the objective function

is too large to be traversed by brute force algorithm in as short
time as LTE’s transmission time interval (TTI).

For solving the formulated proactive LB problem for next
time slot s + s′ in real time, we experimented with several
heuristics and found hybrid combination of Genetic Algorithm
(GA) and Pattern Search (PS) to perform the best. Genetic
Algorithms are class of artificial intelligence algorithms based
on Darwin’s "survival of the fittest, natural selection" theory of
evolution. GA is population based search algorithm that uses
randomized operators mimicking natural selection processes
like crossover and mutation operating over a population of
candidate solutions to generate new points in the search space.
GA are theoretically and empirically proven to provide robust,
efficient and effective search capabilities in complex multivari-
able combinatorial search spaces. The inherent randomness
significantly increase the probability of jumping out local
search space to achieve optimal solutions in global space.
GA are known to find feasible regions relatively quickly but
convergence time to find optimal point is usually very large.
Therefore to overcome this issue, we used hybrid augmenta-
tion scheme wherein GA is first unleashed on unfathomable
search space peculiar to cellular networks to find feasible
region. Once there, the optimization search process is handed
over to Pattern Search algorithm that are efficient for local
search. Therefore based on estimated future network state (i.e.
cell loads) in time slot s + s′, OPERA framework optimizes
network parameters to their optimal values ahead of time such
that load balancing is achieved. Note that for stability issues,
optimization parameter values remain fixed from time slot s to
s′. The optimization algorithms need some time to converge.
However, thanks to proactiveness powered by load prediction
instead of observation as is the case with most existing LB
solutions [3]–[12], the proposed strategy gives considerable
time s′ to find feasible solution.

III. PERFORMANCE EVALUATION

In this section, we present the results for our proposed
OPERA framework. We have gauged its performance against
three benchmark schemes. (i) The first scheme comprises real
mobile network deployment settings—RDS-A, RDS-B, and
RDS-C that are the three most common configurations adapted
from real network LTE deployment settings for one of USA’s
national mobile operator in city of Tulsa with RDS-A (Tilt: 30)
and RDS-B (Tilt: 50) both using antenna [33] and RDS-C (Tilt:
40) using antenna [34]. (ii) The second scheme (a phenomenal
work) is a Joint algorithm (referred to as Joint1 in [9]) that

Fig. 6. Network topology with black dots indicating UEs and SCs are
illustrated by red circles.

is quite relevant and has inspired the proposed work wherein
LB is achieved via tilts with coverage constraints. It is used as
a representative of state-of-art reactive schemes simulated by
inducing artificial delay in getting user location information;
i.e., the scheme is implemented for location information from
the previous 1 minute. The reactive style optimization is
also done on a per minute basis just as for OPERA i.e.,
it is done every minute for the whole 7th day (a total of
60×24 = 1440 evaluation points). One thing to clarify here is
that for fair comparison, we implemented the algorithm in [9]
using load-aware user association (27). (iii) The third scheme
is near-optimal performance bound (NARN) that is OPERA
with 100% prediction accuracy. NARN (OPERA) leverage
a conventional association strategy (a = 0) in (27) while
NARN*(OPERA*) uses a load-aware scheme with a = 0.5
in (27).

A. Simulation Settings
We generated typical macro and small cell based network

topologies and UE distributions in matlab following 3GPP
specifications that are widely used in industrial simulations
found in [35] and [36]. The path loss and shadow fading vary
with carrier frequency whether the UE link is LOS or NLOS.
The detailed expressions for pathloss model used are given
in table A1-2 of [36]. The typical flow of simulation is as
follows: At each time slot, for a given network parameters
configuration (that is set by the optimization algorithm) and
UE position set by the mobility traces, (i) a large scale
channel is generated between UEs and base stations (ii) the
path loss, shadow fading, sectorized antenna gains and other
miscellaneous losses are generated (iii) the combined gains of
the horizontal (azimuth) sectorized and the vertical (elevation)
antennas for a given UE to all base cells/sectors is generated
(iv) Each UE is associated to one macro cell or small cell
based on the association criterion used satisfying the handover
margin and SINR is calculated (v) PRBs are assigned to UEs
based on their required throughputs and achievable SINRs (vi)
cell loads and KPIs of interest are calculated.

The multi-tier HetNet deployment simulated consists of a
primary tier represented by macrocells, and secondary tier
comprising of small cells that share the same spectrum with
the primary tier. Snapshot of the network topology at of one of
the instants is shown in Fig. 6, and the simulation parameter
details are given in Table I. To eliminate any artifacts due to
boundary effects limitations, a wrap around model is used to
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TABLE I
NETWORK SIMULATION PARAMETERS

System Parameters Values
Topology Hexagonal - 7 Macro Cells with 3 Sectors per Base Station

Number of Small Cells 1 per Sector
Number of UEs 84 Mobile, 336 Stationary

LTE System Parameters Frequency = 2 GHz, Bandwidth = 10 MHz, ISD: 500m

Macro Cell Tx Parameters Tx Power: 40 to 46 dBm, Tilt: 900 to 1200

Azimuth: −450 to 450

Horizontal Beamwidth: 450 to 1200

Vertical Beamwidth: 50 to 150

Small Cell Tx Parameters Tx Power = 27 - 30 dBm, CIO = 0 - 10 dB
Node Heights Macro Cell = 25 m, Small Cell = 10 m, UE = 1.5 m
Antenna Gains Macro Cell = 17 dBi, Small Cell = 5 dBi

Macro Cell Antenna Side Lob level Suppression Side lobe level suppression of combined antenna = 25 dB
Side lobe level suppression of azimuth antenna = 25 dB
Side lobe level suppression of elevation antenna = 20 dB

UE Noise figure 7 dB
Coverage Ratio 100%
Simulation Time 1 hour

simulate an infinitely large network without requiring large
number of cells. For realistic evaluations, clustered based
UE depolyment is considered wherein some of the UEs are
distributed non-uniformly by clustering them around a random
hotspot in each sector. We capture the variation of the network
conditions through Monte Carlo style simulations. The perfor-
mance of OPERA highly depends on the movement patterns
of simulated UEs. Majority of relevant works leverage random
waypoint mobility model wherein trajectory is completely
random and unrealistic. Naturally this kind of model is not
suitable especially when objective is to assess performance of
mobility prediction schemes. Therefore, for accurately gauging
performance of the proposed work, selection of appropriate
mobility model was key step since the performance analysis
of OPERA done using realistic mobility traces is going to
be plausible representative of its actual performance in the
real environment. Recently some realistic mobility models
have come to limelight such as SLAW, SMOOTH etc [37].
Among them, only SLAW-model-generated mobility traces
[38] have been shown to capture all the statistical characteris-
tics of mobility patterns in cellular networks like (i) truncated
power-law distributed length of human flights, pause times
and inter-contact times; (ii) each person having his/her own
confined mobility region; (iii) attraction of people to famous
landmarks. Therefore for realistic performance evaluation of
our framework, we selected SLAW for our simulations. SLAW
model based one week HO traces were generated for 84
mobile users. Six days data was used for building semi-
Markov model. Since in real networks, 80% of traffic is
generated indoor [39] therefore additional 336 stationary UEs
are deployed to increase loading on the network. We consider
uniformly distributed five different UE traffic requirement
profiles corresponding to 24 kbps, 56 kbps, 128 kbps, 1024
kbps and 2048 kbps desired throughputs. Considering typi-
cal time period after which updating the parameter may be
practical, we use 1 minute value for the prediction interval
s′ in our simulation study. Therefore, every minute, OPERA
predicts future location of users for next time slot and perform
optimization and this continues for whole day (a total of 1440
evaluation points).

B. Results and Discussion

We first evaluate prediction performance of the mobility
predictor i.e., semi-Markov model trained on six days mo-

Fig. 7. Next Cell Mobility Prediction Accuracy for various {Prediction
Interval, n-Cell Prediction} combinations

bility patterns and tested on seventh day’s dataset. The input
training data for the semi-Markov predictor is time-stamped
cell association record for all UEs containing two fields (Time
and Serving Cell) i.e., at time t1, UE1 is associated with
cell x. The time granularity chosen was 1 minute interval.
In real networks, this record can be extracted from CDRs or
handover reports. In each time slot s, next cell is predicted
for next time slot s + s′ using (16) and (22) and prediction
accuracy is computed which is measured as percentage of
correct predictions of the next cell to visit in next time slot
s + s′. Fig. 7 plots prediction accuracy for various combi-
nations of prediction interval and number of most probable
cells. Comparing 1-Cell prediction with 2-Cell prediction, we
observe that prediction accuracy improves when for next time
slot, we have more than one potential future location. The
average value reach upto 84.39%. This is expected because
spatial resolution has decreased (coarse prediction). On the
other hand, given 1-cell prediction only, prediction accuracy
improves (81.46% average prediction accuracy) with decrease
in prediction interval length for s′ = 1 min. With smaller
prediction window size, UE is less probable to move to large
distances and hence accuracy improves. These high accuracies
observed with semi-Markov model trained/tested on SLAW
generated traces are in line with other studies that are based
on real HO traces collected from live cellular networks [22].
The prediction interval window size is constrained by the
convergence time of Genetic Algorithm and Pattern Search
heuristics algorithms. With the available resources for this
study, minimum amount of 1 minute was required to find
feasible solutions therefore we set s′ = 1 minute in our
simulations.

Next we compared the actual and predicted number of UEs
per cell. Let |Uj(t + 1)| be the number of users predicted to
be in cell j at time t + 1. This consists of users who (i) just
entered into cell i at time t and will be in cell j at time t + 1
given by the following equation:

Uj(t + 1) := {∀u ∈ U|j = arg max
r∈C

(χ(u)
i,r (s = 1))} (34)

and (ii) users who are in cell i and have stayed in cell i for
sojourn time tsoj = o and will be in cell j at time t+1 given
by the following equation:
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Fig. 8. Actual and predicted number of UEs per cell

Fig. 9. Normal Probability Plot for Average Location Estimation Error

U ′
j(t + 1) := {∀u ∈ U|j = arg max

r∈C
(χ̂(u)

i,r (s′ = 1, o))} (35)

Therefore, the total number of UEs predicted to be in cell j
at time t + 1 will be as follows:

|Uj(t + 1)| = |Uj(t + 1)| + |U ′
j(t + 1)| (36)

As evident in the Fig. 8, the mobility prediction model is able
to predict the number of UEs in most of the cells at the next
time interval with high accuracy. Algorithm 1 proposed by
us in [30] was used to estimate the location of UEs for one
hour simulation duration after every s′ time slots. On average,
location estimation algorithm exhibited distance error (distance
between between estimated and actual coordinates) of 27.5
meters with maximum value of around 33 meters. The normal
probability plot for average location estimation error is shown
in Fig. 9 that is a graphical technique to identify normality
in observations. Samples from normal distribution follow
straight line. As per the figure, error in location estimation
can be approximated by normal distribution. Fig. 10 plots the
histogram of difference (error) between predicted and actual
load values with OPERA that leverage semi-Markov based
future location algorithm [30]. It is observed that most of the
error falls into 0.05 bin with root mean square rrror (RMSE)
of 0.2711.

Next, the offered cell load CDFs for all the cells with
Real Deployment Settings, Joint, and proposed schemes is

Fig. 10. Histogram of Error between Predicted and Actual Load values

Fig. 11. Average Offered Cell Loads CDF of all cells

shown in Fig. 11. It is evident from the plot that with Joint,
majority of the cells remain overloaded. The reason can be
attributed to (i) reactive approach and (ii) usage of only tilt as
optimization parameter. This increases the overloading or the
percentage of unsatisfied users (as shown in Fig. 13). Same
trend is observed for the Real Deployment Settings wherein
cells remain overloaded with overloaded cells maximum in
RDS-A (around 26%), followed by RDS-C (around 23%)
and RDS-B (around 21%) respectively. Compared to these
fixed configurations settings and Reactive schemes, the pro-
posed solution OPERA and OPERA* achieve load reduction
purely by increasing resource efficiency through dexterous
optimization of antenna parameters (transmission power, tilts,
azimuths, beam widths) and CIOs such that the cell loads are
substantially reduced. Although slight overloading is observed
with OPERA (OPERA*) of around 4% (2%) that is due
to the prediction inaccuracies. This overloading is mitigated
when prediction accuracy reaches 100% which is shown by
NARN and NARN* wherein maximum cell loads are 66%
and 54% respectively. It is observed that inclusion of load
metric in association criterion i.e., making the cell association
scheme load aware as proposed in (27) [12] improves the
residual capacity fairness in all cells. As a result of this even
in presence of prediction inaccuracies, cells have more free
capacity to accommodate actual extra load as compared to a
less predicted load.

Fig. 12 shows the box plot of percentage of free resources
among all the cells achievable with the RDS, Reactive and
proposed schemes. The inclusion of load metric in user asso-
ciation criterion as defined by (27) in OPERA* and NARN*
results in less variance in residual capacity as compared to rest
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Fig. 12. Box plot of percentage of free resources in the cells

Fig. 13. Percentage of Un-Satisfied users

of the schemes. Note that the OPERA and OPERA* result in
some cells with no free resources. This is due to the prediction
inaccuracies. This zero residual capacity scenario is avoided
with NARN and NARN*. The variance in cell loads is further
analyzed using Jains Fairness index calculated through (37)
and plotted in Fig. 13 wherein the average percentage of un-
satisfied users is visualized on left y-axis while Jains Fairness
index for residual capacity is plotted on right y-axis achievable
with the RDS, Reactive and proposed schemes.

JFI(1 − ηc) =
(
∑

c(1 − ηc))2

(|C| ×
∑

c(1 − ηc)2)
(37)

The result computed from (37) ranges from (1/|C|) (worst
case) to 1 (best case), and it is maximum when all the cells
have the same amount of free residual capacity. Due to max-
imum overloading experienced with conventional RDS and
Reactive schemes, considerable number of users face blocking
and become unsatisfied. Load aware association based pro-
posed schemes OPERA* (NARN*) achieve maximum fairness
of 0.967 (0.992) as compared to their contemporaries OPERA
(NARN) with fairness of 0.965 (0.989). This fairness helps
to reduce the percentage of unsatisfied users from 0.98% in
OPERA to 0.35% in OPERA*. It is interesting to observe
that even in presence of prediction inaccuracy, percentage of
satisfied users is above 99% with OPERA. Figure 14 plots
the CDFs for the achievable UE SINRs with the RDS, reac-
tive, and proposed schemes. For reactive and RDS schemes,
SINR drops as compared to other schemes. The reason is
that maximum loaded macro cells cause more network-wide

Fig. 14. Average UE SINR CDF

interference, which reduces the achievable SINR of the UEs.
This interference footprint of macro cells becomes highly
contained with the proposed schemes (OPERA and OPERA*)
by optimizing the values of antenna parameters and CIOs such
that SINR is enhanced and cell loads are minimized. Moreover,
the inclusion of the load metric in the association scheme
(OPERA* and NARN*) reduces the achievable SINR of the
UEs, as the UEs are not connected to the strongest possible
cell. Despite decreasing SINR for NARN*, as compared to
NARN, the solution manages to deliver the gains observed
in Fig. 13, mainly because of load fairness by optimizing
the horizontal and vertical beam widths, tilts, azimuths, Tx
power, and CIOs. Actually with CIO in use, SINR is bound
to deteriorate; however, this can be taken care of if sufficient
PRBs are available to offset the loss caused by the lower
SINR. This compensating act is why OPERA* and NARN*
outperform, hence the gain in resource utilization is observed.

C. Complexity Analysis

The complexity of OPERA framework depends upon time
complexity of (i) semi-Markov based mobility prediction
model, (ii) future location estimation algorithm, and (iii) the
heuristic algorithm to solve optimization problem. As per
[20], time complexity in computing (22) for all users in the
network in each time slot of duration s′ is O(s′|U||C|2) once
all required parameters have been evaluated which is not a
significant overhead. Time complexity of location estimation
algorithm increases linearly with number of geo-markers |L|
in each cell. For the heuristic algorithm, considering GA
alone with G as maximum number of iterations (genera-
tions) and P as the number of solution space samples per
iteration, execution time complexity is O(GP ) [40]. Hence
total runtime of OPERA framework can be generalized as
O(GP |L|s′|U||C|2). The proactiveness of OPERA minimizes
impact of this execution time on subscriber QoE. If τobv is the
time needed to detect overloading in the network, τop the time
needed to solve NP-hard non-convex load balancing problem
and τsp as time needed to change network parameters to new
settings then total degradation time in the network is sum
of τobv ,τop and τsp. With proactive optimization strategy of
OPERA, this degradation time become zero if sum of τop and
τsp is less than or equal to prediction window size s′. Moreover
load-aware-user association and hybrid heuristic combination
technique further reduces τop by some factor ε i.e., τop

ε which
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Fig. 15. Time line diagram for Proactive and Reactive LB SON functions

lessens strain on selection of prediction window size (see Fig.
15).

IV. CONCLUSIONS & FUTURE WORKS

In this paper we have proposed a novel spatiotemporal
mobility prediction based proactive load balancing optimiza-
tion framework for HetNets by jointly optimizing Tx power,
tilts, azimuths, beam widths and CIOs. The proposed OPERA
framework employs innovative concept of estimating future
user locations and leverages that to estimate future cell
loads. We then formulate a system level fairnesss aware load
optimization problem for the estimated future cell specific
loads. The majority of the current load balancing solutions
are reactive and are designed to perform LB dynamically
in real-time after observing the congestion. With reactive
approach it is close to impossible to meet 5G ambitious QoS
requirements even when substantial computing resources are
available. Keeping this in view, the proposed approach makes
it possible to solve LB optimization problem in real time
without jeopardizing the QoE. Moreover, OPERA framework
accounts for the interplay between two intertwined SON func-
tions (LB and CCO) and thus ensures conflict free operation. A
load aware association strategy that underpins OPERA further
bolsters the framework against location estimation accuracies
and maximizes system level capacity and QoE in addition
to balancing load. Extensive simulations leveraging realistic
mobility patterns indicate that, in best case, OPERA can
reduce percentage of unsatisfied users to 0.35% despite of
acute mobility and heterogeneity of cell sizes. The presented
results highlight the value of prediction (AI) based proactive
optimization.

For future work, vehicular mobility traces will be used since
in case of vehicles, the trajectory direction of mobility traces
will be more deterministic and regular as vehicles can only
follow the road topology as compared to pedestrians who can
go through any direction. On top of that, the knowledge of
street/road layout and the navigation App data e.g., google
maps navigation that determines the trajectory can be exploited
to maintain accuracy. Thus intuitively, it is expected that by
focusing on vehicular mobility the performance of proposed
solution is likely to improve. However, superposing the road
maps and speed data to achieve higher accuracy is a separate
research study that is beyond scope of this paper and will be
subject of future study. Moreover, machine learning predictors

like deep neural networks and gradient boosting trees will be
employed in place of semi-Markov in OPERA framework that
are recently being investigated heavily for cellular networks
optimization like in [41], [42] and end-to-end gains will be
evaluated.
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